BME100 f2014:Group11 L6

From OpenWetWare
Jump to navigationJump to search
BME 100 Fall 2014 Home
People
Lab Write-Up 1 | Lab Write-Up 2 | Lab Write-Up 3
Lab Write-Up 4 | Lab Write-Up 5 | Lab Write-Up 6
Course Logistics For Instructors
Photos
Wiki Editing Help


OUR COMPANY

Name: Aliya Yano
Name: Breanna Corrigan
Name: Julian Lopez
Name: Carlos Cabanes
Name: Mohammed Almaimani


LAB 6 WRITE-UP

Bayesian Statistics

calibration

calibration

Calculation one describes the sensitivity to detect disease SNP.
Calculation two describes the specificity to detect the disease SNP.
Calculation three describes the sensitivity to predict the disease.
Calculation four describes the specificity to predict the disease.

Overview of the Original Diagnosis System
The BME 100 class tested patients for disease-associated SNP by assigning 34 different teams of 5-6 students 2 patient samples to test. That results in 68 total patients being tested. Within the groups, many things were done to prevent error. Each group was given three samples for each of their patients and had controls to compare the PCR results to. The use of ImageJ was first used on calibration samples in order to determine a baseline and get the best results. When actually testing the patient PCR samples three pictures of each individual PCR sample were supposed to be taken and analyzed in ImageJ. Out of the 68 patients sampled, 6 had no test results given, and 8 results were inconclusive. Out of those remaining, 30 tested positive and 24 negative.

What Bayes Statistics Imply about This Diagnostic Approach


Computer-Aided Design

TinkerCAD
TinkerCAD is a system very similar to Solidworks, which we used in BME 182. Using a template provided we simply used this program to create the PCR machine pieces put them together. The following are picture of the PCR machine we made from the template. calibration
calibration
calibration
Our Design

calibration

Our design change was simple: we increased the area that could hold samples to be tested. This would allow more samples to be tested at once and reduce the number of machines needed in the lab.


Feature 1: Consumables Kit

The consumables were relatively well packaged and therefor will be packaged similarly in our kit. However, there was one weakness we would address: all the samples could be contaminated easily as they were open to the air and had no protection from random particles that could float down into them. To remedy this,the sample containers could be made with a sort of plastic covering on the top of the tube. It would not be a cap, which they already have, but more like the thin plastic squeezable ketchup bottles have. This could keep contaminates from floating down into the samples.

Feature 2: Hardware - PCR Machine & Fluorimeter