BIOL398-04/S15:Week 12: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(→‎Shared Journal Assignment: added reflection questions)
Line 66: Line 66:
* Add the "BIOL398-04/S15" category to the end of the wiki page (if someone has not already done so).
* Add the "BIOL398-04/S15" category to the end of the wiki page (if someone has not already done so).


=== Reflection ===


# What aspect of this assignment came most easily to you?
# What aspect of this assignment was the most challenging for you?
# What (yet) do you not understand?


</div>
</div>

Revision as of 22:38, 8 April 2015

BIOL398-04: Biomathematical Modeling

MATH 388-01: Survey of Biomathematics

Loyola Marymount University

Home       People        LionShare       Help      


This journal entry is due on Tuesday, April 14 at midnight PDT (Monday night/Tuesday morning). NOTE that the server records the time as Eastern Daylight Time (EDT). Therefore, midnight will register as 03:00.

NOTE: this page is under construction.

Individual Journal Assignment

  • Store this journal entry as "username Week 12" (i.e., this is the text to place between the square brackets when you link to this page).
  • Create the following set of links. (HINT: These links should all be in your personal template that you created for the Week 1 Assignment; you should then simply invoke your template on each new journal entry.)
    • Link to your journal entry from your user page.
    • Link back from your journal entry to your user page.
    • Link to this assignment from your journal entry.
    • Don't forget to add the "BIOL398-04/S15" category to the end of your wiki page.

For your assignment this week, you will keep an electronic laboratory notebook on your individual wiki page that records all the manipulations you perform on the data and the answers to the questions throughout the protocol. We will be working on the protocols in class on Thursday, April 9. Whatever you do not finish in class will be homework to be completed by the Week 12 journal deadline.

Using YEASTRACT to Infer which Transcription Factors Regulate a Cluster of Genes

In the previous analysis using STEM, we found a number of gene expression profiles (aka clusters) which grouped genes based on similarity of gene expression changes over time. The implication is that these genes share the same expression pattern because they are regulated by the same (or the same set) of transcription factors. We will explore this using the YEASTRACT database.

  1. Open the gene list in Excel for the profile/cluster that you analyzed for the Week 11 Assignment.
    • Copy the list of gene IDs onto your clipboard.
  2. Launch a web browser and go to the YEASTRACT database.
    • On the left panel of the window, click on the link to Rank by TF.
    • Paste your list of genes from your cluster into the box labeled ORFs/Genes.
    • Check the box for Check for all TFs.
    • Accept the defaults for the Regulations Filter (Documented, DNA binding plus expression evidence)
    • Do not apply a filter for "Filter Documented Regulations by environmental condition".
    • Rank genes by TF using: The % of genes in the list and in YEASTRACT regulated by each TF.
    • Click the Search button.
  3. Answer the following questions:
    • In the results window that appears, the p values colored green are considered "significant", the ones colored yellow are considered "borderline significant" and the ones colored pink are considered "not significant". How many transcription factors are green or "significant"?
    • List the "significant" transcription factors on your wiki page, along with the corresponding "% in user set", "% in YEASTRACT", and "p value".
    • Are CIN5, GLN3, HMO1, and ZAP1 on the list?
  4. For the mathematical model that we will build in class, we need to define a gene regulatory network of transcription factors that regulate other transcription factors. We can use YEASTRACT to assist us with creating the network. We want to generate a network with approximately 15-30 transcription factors in it. You will use the "significant" transcription factors from your analysis above and add CIN5, GLN3, HMO1, and ZAP1 if they are not in your list.
    • Go back to the YEASTRACT database and follow the link to Generate Regulation Matrix.
    • Copy and paste the list of transcription factors you identified (plus CIN5, GLN3, HMO1, and ZAP1) into both the "Transcription factors" field and the "Target ORF/Genes" field.
    • We are going to generate several regulation matrices, with different "Regulations Filter" options.
      • For the first one, accept the defaults: "Documented", "DNA binding plus expression evidence"
      • Click the "Generate" button.
      • In the results window that appears, click on the link to the "Regulation matrix (Semicolon Separated Values (CSV) file)" that appears and save it to your Desktop. Rename this file with a meaningful name so that you can distinguish it from the other files you will generate.
      • Repeat these steps to generate a second regulation matrix, this time applying the Regulations Filter "Documented", "Only DNA binding evidence".
      • Repeat these steps a third time to generate a third regulation matrix, this time applying the Regulations Filter "Documented", DNA binding and expression evidence".

Analyzing and Visualizing Your Gene Regulatory Networks

  1. We will analyze the regulatory matrix files you generated above in Microsoft Excel to determine which one will be appropriate to pursue further in the modeling.
    • You will repeat these steps for each of the three files you generated above. Open the file in Excel. It will not open properly in Excel because a semicolon was used as the column delimiter instead of a comma. To fix this, Select the entire Column A. Then go to the "Data" tab and select "Text to columns". In the Wizard that appears, select "Delimited" and click "Next". In the next window, select "Semicolon", and click "Next". In the next window, leave the data format at "General", and click "Finish". This should now look like a table with the names of the transcription factors across the top and down the first column and all of the zeros and ones distributed throughout the rows and columns. This is called an "adjacency matrix." If there is a "1" in the cell, that means there is a connection between the trancription factor in that row with that column.
    • Save this file in Microsoft Excel workbook format (.xlsx).
    • Check to see that all of the transcription factors in the matrix are connected to at least one of the other transcription factors by making sure that there is at least one "1" in a row or column for that transcription factor. If a factor is not connected to any other factor, delete its row and column from the matrix. Make sure that you still have somewhere between 15 and 30 transcription factors in your network after this pruning.
    • For this adjacency matrix to be usable in GRNmap (the modeling software) and GRNsight (the visualization software), we need to transpose the matrix. Insert a new worksheet into your Excel file and name it "network". Go back to the previous sheet and select the entire matrix and copy it. Go to you new worksheet and click on the A1 cell in the upper left. Select "Paste special" from the "Home" tab. In the window that appears, check the box for "Transpose". This will paste your data with the columns transposed to rows and vice versa. This is necessary because we want the transcription factors that are the "regulatORS" across the top and the "regulatEES" along the side.
    • In cell A1, copy and paste the text "rows genes affected/cols genes controlling".

Shared Journal Assignment

  • Store your shared journal entry in the shared Class Journal Week 12 page. If this page does not exist yet, go ahead and create it (congratulations on getting in first :) )
  • Link to your journal entry from your user page.
  • Link back from the journal entry to your user page.
  • Sign your portion of the journal with the standard wiki signature shortcut (~~~~).
  • Add the "BIOL398-04/S15" category to the end of the wiki page (if someone has not already done so).

Reflection

  1. What aspect of this assignment came most easily to you?
  2. What aspect of this assignment was the most challenging for you?
  3. What (yet) do you not understand?