BIOL398-03/S13:Class Journal Week 1

From OpenWetWare

Revision as of 13:33, 19 January 2013 by Kevin Matthew McKay (Talk | contribs)
Jump to: navigation, search

User:Laura Terada

  • Before reading the Stewart chapters (on your honor), answer the following questions; When you hear the term mathematics, what comes to mind? Mathematics is a discipline that encompasses numbers, logic, equations, and theories. In my experience, math is a highly conceptual topic of study. Math requires learning how to reason and the methods one needs to reach an answer (or answers). Consequently, it is this process of reasoning that I find the most valuable in the field of mathematics in regards to my everyday life.
  • Do you consider yourself a mathematician? why or why not? I would consider myself a mathematician on a very basic level because I use math in other disciplines, such as physics, chemistry, and biology. All other science fields require a general knowledge on math concepts (e.g. probability, statistics, algebra, derivatives, etc.). I do not consider myself a highly skilled mathematician because I simply have not taken many math courses, and I do not have much knowledge on the subject.
  • Before reading the Janovy chapter (on your honor), answer the following questions; When you hear the term biology, what comes to mind? I think of all forms of life and everything that explains it. Biology is a study that embodies a broad range of topics including plants and animals, and the mechanisms by which they grow and develop. When I hear the term biology, I also think about how all living things relate to one another and the many comparisons scientists can draw between the different aspects of biology.
  • Do you consider yourself a biologist? why or why not? I consider myself a biologist not only because it is my major, but also because I feel like I am constantly thinking about different aspects of biology. I am always curious about why certain things are the way they are, and most times I try to find the explanation to these questions. To be a biologist, in my perspective, is to have this interest on gaining new knowledge on different aspects of life.
  • After reading the Stewart and Janovy chapters, answer the following questions:
  1. What did you find most interesting or provocative about the Stewart reading? The most interesting I found about the Stewart reading was all the examples he used in relating the study of mathematics to everyday life. In the previous question of "What do I think about when I hear the term math?" I discussed how mathematics is a study that can be applied to the other sciences. However, Stewart points out that math can be applied to the world outside of science. He gives examples such as GPS, plane flights, the Internet, modes of communication (e.g. cell phones), genetics, GMO crops, rainbows, and even animal movement. All these examples represent only a minute fraction of how math is applied in daily life. The most interesting example was when Stewart related the lattice structure of a crystal to the position of birds in a given area.
  2. What did you find most interesting or provocative about the Janovy reading? Janovy's argument on paradigms in biology is one that I found to be interesting. Janovy introduces this topic when discussing Thomas Kuhn, who defines what a paradigm is. Paradigms in biology are areas of study that are the most widely accepted. Janovy argues that "paradigms both direct and limit intellectual development" (Janovy 11). Later in his paper, Janovy gives an example of how scientists will apply for grants , often times with a statement of objective that leans towards the aim of the corporation. It is interesting to me that I notice this in today's society. There is a strong emphasis on the study of genetics in comparison to decades ago. This paradigm has influenced not only biologists, but also technicians and physicians as well. Another aspect of the Janovy reading that I found interesting was Janovy's theme of evolution throughout the chapter. He states that any scientist can relate their field of study to evolution (5). In his conclusion, Janovy ends with a comment on how biologists today have become so specialized in their work; however, it is this specialization that will drive one to "role extinction." The basis of biology, however, is to instead broaden one's view, exactly like the naturalist.
  3. What does it mean to be a biologist? Do you consider yourself a biologist? Why or why not? What I find interesting about the Janovy reading is both the similarities and differences he makes between biologists and nonbiologists. An early biologist, which one can think of as a naturalist, would consider humans as just another species in the existence of the biosphere. In contrast, the rest of the public community tends to focus on a culture centered on humans. Janovy argues that a biologist should continue naturalist ideals. He uses individuals such as Thomas Hunt Morgan, Jacques Monod, and Charles Darwin to exemplify how successful biologists were attached to the world of living organisms since an early age (Janovy 6). Having an interest in the natural world is only one aspect of what it means to be a biologist. Janovy continues to discuss how biologists perceive their surroundings. He contends that biologists see complexity through uniformity, they tend to pose questions, and they also sense interdependencies in the environment around them (19). Janovy also discusses the attributes of a modern-day biologist. Since World War II, technological advances have become intertwined into the field of biology. Today, biologists use tools; however, they tend to not uphold the values and world views of a naturalist. The study of biology requires a knowledge on computers and math in order to reach biological conclusions. Janovy clarifies his argument by discussing how biology has become interdisciplinary-- relying on other sciences such as chemistry, physics, mathematics, and even the social sciences. Although these are descriptions of the present-day biologist, Janovy concludes that biologists need to not stray away from the original values and worldviews of a naturalist.
    • After reading the Janovy reading, I still consider myself a biologist. Like Morgan, Monod, and Darwin, I found myself interested in living organisms since a young age. Although I have learned and performed various technological methods to determine biological conclusions, I still value and revel in nature, which is what Janovy considers to be a vital attribute of a biologist. I try to surround myself with the natural environment at every opportunity.
  4. What does it mean to be a mathematician? Do you consider yourself a mathematician? Why or why not? In the Stewart reading, a mathematician is one that can not only see patterns in various settings, but is one who can mathematically justify why these patterns occur. For example, Stewart is able to relate an atom's crystal lattice structure to bird positions, and he can even mathematically deduce why rainbows exist.
    • After reading the Stewart reading, I still do not consider myself an actual mathematician. Stewart is an individual who bridges the gap between mathematics and nature. In contrast, I do not see patterns in the environment to the extent that he does. For example, of course I have noticed the shape of a rainbow; however, I have never thought about the mathematical reasoning behind it. From this reading, I hope to become more aware of the significance of math in my daily life.
  5. What are the similarities and differences between the two readings? Both readings make distinctions between how the field of study is perceived by the general public and what it actually is. In the Janovy reading, he argues that biology is understood to be a field of technological tests, drawing from other disciplines. However, the root of biology should be in the value of nature. Similarly, Stewart claims that the notion of the public on mathematics is that it is simply a field of numbers. In reality, math is responsible for many things we need on an everyday basis. In a sense, math is devalued because of its obscure role in society.
    • Another similarity between the two readings is that both biologists and mathematicians have a distinct way of thought that is dissimilar from other individuals. Biologists tend to think of humans as another species, whereas society puts more value on humans over other species. Similarly, Stewart contends that mathematicians think differently as well, as noted in the last paragraph of chapter 5. Mathematicians tend to see trends and patterns in their surroundings, which math can explain.
    • Although both readings display similarities, they are also different. Firstly, Janovy argues that most biologists lose sight of what it truly means to be a biologist, which is upholding a passion for nature and living organisms. Instead, modern-day biologists may get caught up in paradigms and other influences. In contrast, Stewart suggests that mathematicians are the only ones that understand the true meaning of math, which is the fact that math can be used in everyday life, including in nature. The public, however, is the group of individuals who have the misconceptions on the field of study. Secondly, the Janovy reading proposes that although nature and evolution are the main pillars of biology, biology today is a study which encompasses the other sciences. In contrast, Stewart poses that it is mathematics that highly contributes to other disciplines.
Laura Terada 04:53, 19 January 2013 (EST) User:Kevin Matthew McKay

Personal tools