B3,B4チーム/B3,B4 team: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
{{:Biomod/2012/TeamJapan/Sendai/Header}}
{{:Biomod/2012/TeamJapan/Sendai/Header}}
<html>
<html>
<table border="2" align="center" vertical-align: middle; width="800">
<font size=4>
<tr><td>
'''Our project'''
 
</font>
<font color="#ff0000" size="3">「DNAを用いて3次元構造の汎用性を持つモジュールを作成し、モジュールの組み合わせ方によって様々な構造の分子ロボットの設計を容易にする。」</br>
 
</font></td></tr>
</table>
</html>
<br/><br/>
<br/><br/>
<font size =2>
•レゴブロックの1パーツようなモジュールを作成する。<br/>
•モジュールの形状は合体するのに最も効率が良く、合体した結果機能を発揮しやすい形状を選択する。(立方体が現実的。)<br/>
            ↓<br/>
立方体は基本単位となる。様々な構造を形成可能。<br/>
•モジュール内を空洞にすることで何かしらの機能を積ませることができる。<br/>
•モジュールはパーツの数を固定すれば、そのパーツの個数内で可能な様々な構造をとれる。<br/>
•モジュールは様々な形があり個々によって引っ付ける部分が異なる。<br/>
•最終的に典型的な形状を作成する。円とかピラミッドとかできたらいい。<br/>
•中を空洞にすることで最終的に何かしら機能を積ませることができるのではないか?(強度の問題)<br/>
•形状はより小さい方がよいと思われる。(10n×10n×10nぐらい)<br/>
•立方体同士をくっつけるのにマイナスチャージが大きいため引っ付かないと思われる。<br/>
•どのくらいの結合力が無いと難しいか計算が必要。<br/>




<font size=3>立方体同士の結合方法</font><br/>
Our idea is a molecular Lego block. First, as a body of the block, we create a hollow cube made of DNA origami. This cube is designed so that it can be combined with other cubes. You can realize various designs by combining these cubes, where each cube has its own feature or functionality.
First, we put a drug molecule in an empty cube and close the lid. Make another cube with mobility with some molecular motors. By connecting these two cubes, autonomous molecular delivery will be achieved. If this is realized, recombination of the drug is easy, and may be used in DDS. The DDS is the acronym for a “drug delivery system”, a technology to deliver drugs to target cells.
Something lacking in this story is a method to connect the cubes, binding surfaces of the cubes. The problem with the binding surfaces is electric charge of DNA molecules. DNA is highly charged molecule. The strong negative charge on the backbone of DNA molecules helps it to dissolve in water, but at the same time it causes repulsion between DNA. Consequently, it is relatively easily to align them in a line where the interaction by the charge is weak. However, between the surface made of parallel DNAs, there is much stronger repulsion between them. This means that binding surface to surface is difficult.
Our idea to solve this problem is to use a positively charged lipid as glue. For example, if the micelle, which is one of the typical lipid shape plays a role of the connecter between the surfaces. The micelle is a sphere like configuration of lipid molecules, exposing positive charges on the outside.  So the negatively charged DNA and positively charged micelle attract each other. Therefore, it can be used as a connector or joint between the cubes in this way.
However, using lipid, the problem of selectivity will come out. Namely, Lipid sticks to every cube surfaces, and the whole surface of the cube become sticky, that is not what we want. In order to adhere to the desired surfaces, we using single strand of DNA hybridization or creating special surface shapes.
<br/>
<br/>


① ハイブリダイゼーション <br/>
➡反発する中で結合可能なのか。<br/>
② タンパク質(STV +biotin)<br/>
③ 電荷(チャージ)<br/>
➡制御が難しい。<br/>
④ 物理的にくっつける(構造的)<br/>
➡反発する可能性。<br/>
⑤ スタッキング<br/>
➡制御が難しい。<br/>


<font size=4>'''Our strategy'''</font>
<font size =2>


<br/><br/>
<font size=3>STAGE1目的:脂質でDNAオリガミが引っ付くかの確認</font><br/>
①BIOMOD2011のフィールドおよび三角柱を製作する。<br/>
②DNAオリガミの精製を行う。(PEG沈、エタ沈)<br/>
③引っ付けるためにどのような脂質を用いるか決める。<br/>
④加える脂質のパラメータを決める。用いるDNAに対しての濃度の決定。<br/>
⑤脂質を加えて引っ付くかどうかを確認する。<br/>
<br/>
<font size=3>STAGE2 目的:凹凸平面が引っ付くかの確認</font><br/>
①発注する平面をcadnanoで設計する。<br/>
②発注した平面がちゃんと作成できるかの確認(AFM,電気泳動)<br/>
③STAGE1で得た平面の接合条件で平面を引っ付けてみてどのような傾向があるか確かめる。平面依存性、平面and濃度依存性。<br/>
④最適面形状および濃度の決定。(形状により配向性があるか確認)<br/>
<br/>
<font size=3>STAGE2-1目的:配向性の選択(形状に配向性が無かった場合)</font><br/>
① 凹凸平面にステイプルを生やす。<br/>
② 脂質+ステイプルでの結合による配向性を確認する。<br/>
③ 結合させたい平面同士を引っ付ける。<br/>
<br/>
<font size=3>STAGE3 目的:3次元モジュールの製作</font><br/>


<font color=ff0000 size=3>箱表面にプラスチャージの脂質膜で覆うことで電気的に中性にした上で箱同士の表面で脂質二重膜を作り、ハイブリダイゼーションすれば結合できるのではないか。</font><br/>
① cadnanoにより3次元立方体構造を製作する。作成する立方体構造は平面および濃度により配向性があった場合はそれらを考慮し形を工夫する。<br/>
               
        平面配向性が無かった場合ステイプルを生やしたものを設計する。<br/>
 
② 作成した3次元立方体を平面同士の結合と同じ条件で組み合わせてみる。<br/>
脂質がDNA origamiを囲った状態でハイブリダイゼーションできるのか検証する必要がある。<br/>
③ 3次元の観察方法としてAFMおよび電子顕微鏡を用いる。<br/>
 
<br/>


</font>
</font>

Revision as of 05:18, 7 August 2012

<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>SAMPLE</title> <style type="text/css">

a {color: #017acd}

/* コンテナ */ div#Container {background-image: url(side-blue.png); background-repeat: repeat-y; background-position: right top; width: 800px; margin-left: auto; margin-right: auto}

/* ヘッダー */ div#Header {background-color: #ffffff; background-image: url(sky.jpg); padding: 28px 20px 50px}

div#Header h1 {margin: 0}

div#Header p {color: #000000; font-size: 1.5em; font-family: Times New Roman, Times, serif; margin: 0}

/* パンくずリスト */ p#Bread {background-color: #ffffff; font-size: 1em; margin-top: 0; margin-bottom: 0; padding-top: 3px; padding-bottom: 20px}


/* コンテンツ */ div#Content {width: 580px; float: left; margin-left: auto; margin-right: auto; margin-bottom: 25px}

div#Content h2 {background-color: #808080; background-image: url(bar-blue.png); background-repeat: no-repeat; font-size: 1.25em; font-family: Lucida Sans Unicode, Courier, sans-serif; color: #ffffff; line-height: 28px; padding-left: 6px; margin-top: 0; margin-bottom: 0}

div#Content h3 {background-color: #e0e0e0; background-image: url(bar-green.png); background-repeat: no-repeat; font-size: 0.875em; line-height: 23px; padding-left: 30px; margin-top: 30px; margin-bottom: 0}

div#Content p {font-size: 1.5em; font-family: Times New Roman, Times, serif; line-height: 1.6; margin-top: 10px}

div#Content p#message {margin-top: 0}


/* サイドバー */ div#Sidebar {width: 190px; float: right; margin-bottom: 25px}

ul.sidemenu {border-top: solid 1px #000000; font-size: 1.25em; font-family: Times New Roman, Times, serif; margin-top: 20px; margin-left: 12px; margin-right: 12px; padding-left: 0; line-height: 0}

ul.sidemenu li {list-style-type: none}

ul.sidemenu li a {display: block; line-height: 30px; text-decoration: none; color: #000000; background-color: transparent; border-bottom: solid 1px #000000; padding-left: 5px}

ul.sidemenu li a:hover {background-color: #017acd}

p.feed {margin-bottom: 10px; margin-left: 12px;}

p.feed a {background-color: #ffffff; font-size: 0.75em; color: #444444; text-decoration: none; line-height: 30px; border: solid 1px #888888; padding: 5px}

p.feed img {border: none; vertical-align: middle}


/* フッター */ div#Footer {background-image: none; background-repeat: repeat-x; width: 190px; margin-left: 570px; margin-top: 0; padding-top: 8px; clear: both}

address {font-size: 0.75em; font-style: normal; color: #000000; text-align: left; padding: 12px}

</style> </head> <body>

<a href="http://openwetware.org/wiki/Biomod">BIOMOD</a> > <a href="http://openwetware.org/wiki/Biomod/2012 ">2012</a> > <a href="http://openwetware.org/wiki/Biomod/2012/Tohoku/Team_Sendai ">Team Sendai</a> > <a href="http://openwetware.org/wiki/Pilot_ver. ">Team Sendai A Top</a>> <a href=" http://openwetware.org/wiki/Methods.html ">Methods</a>



<html> Our project


Our idea is a molecular Lego block. First, as a body of the block, we create a hollow cube made of DNA origami. This cube is designed so that it can be combined with other cubes. You can realize various designs by combining these cubes, where each cube has its own feature or functionality. First, we put a drug molecule in an empty cube and close the lid. Make another cube with mobility with some molecular motors. By connecting these two cubes, autonomous molecular delivery will be achieved. If this is realized, recombination of the drug is easy, and may be used in DDS. The DDS is the acronym for a “drug delivery system”, a technology to deliver drugs to target cells. Something lacking in this story is a method to connect the cubes, binding surfaces of the cubes. The problem with the binding surfaces is electric charge of DNA molecules. DNA is highly charged molecule. The strong negative charge on the backbone of DNA molecules helps it to dissolve in water, but at the same time it causes repulsion between DNA. Consequently, it is relatively easily to align them in a line where the interaction by the charge is weak. However, between the surface made of parallel DNAs, there is much stronger repulsion between them. This means that binding surface to surface is difficult. Our idea to solve this problem is to use a positively charged lipid as glue. For example, if the micelle, which is one of the typical lipid shape plays a role of the connecter between the surfaces. The micelle is a sphere like configuration of lipid molecules, exposing positive charges on the outside. So the negatively charged DNA and positively charged micelle attract each other. Therefore, it can be used as a connector or joint between the cubes in this way. However, using lipid, the problem of selectivity will come out. Namely, Lipid sticks to every cube surfaces, and the whole surface of the cube become sticky, that is not what we want. In order to adhere to the desired surfaces, we using single strand of DNA hybridization or creating special surface shapes.


Our strategy



STAGE1目的:脂質でDNAオリガミが引っ付くかの確認
①BIOMOD2011のフィールドおよび三角柱を製作する。
②DNAオリガミの精製を行う。(PEG沈、エタ沈)
③引っ付けるためにどのような脂質を用いるか決める。
④加える脂質のパラメータを決める。用いるDNAに対しての濃度の決定。
⑤脂質を加えて引っ付くかどうかを確認する。

STAGE2 目的:凹凸平面が引っ付くかの確認
①発注する平面をcadnanoで設計する。
②発注した平面がちゃんと作成できるかの確認(AFM,電気泳動)
③STAGE1で得た平面の接合条件で平面を引っ付けてみてどのような傾向があるか確かめる。平面依存性、平面and濃度依存性。
④最適面形状および濃度の決定。(形状により配向性があるか確認)

STAGE2-1目的:配向性の選択(形状に配向性が無かった場合)
① 凹凸平面にステイプルを生やす。
② 脂質+ステイプルでの結合による配向性を確認する。
③ 結合させたい平面同士を引っ付ける。

STAGE3 目的:3次元モジュールの製作

① cadnanoにより3次元立方体構造を製作する。作成する立方体構造は平面および濃度により配向性があった場合はそれらを考慮し形を工夫する。

       平面配向性が無かった場合ステイプルを生やしたものを設計する。

② 作成した3次元立方体を平面同士の結合と同じ条件で組み合わせてみる。
③ 3次元の観察方法としてAFMおよび電子顕微鏡を用いる。