2020(S08) Lecture:week 4

From OpenWetWare
Jump to navigationJump to search

<html> <style>#en2020 a {color:black;}</style> </html>

Week 4 Tuesday

Challenge: Superman vs Batman

Instructions: If you're looking to start an argument on a playground, ask a few of the elementary school kids who would win if Superman fought Batman. Superman has a number of innate "super" abilities, while Batman comes prepared with a handy utility belt plus plenty of training. It would be a close fight, for sure, but there's little agreement about which character would remain standing after a head to head battle. At your tables you should decide the winner and what powers and properties of that character tipped the balance for your group. Start by considering each hero's

  • mobility
  • fighting abilities
  • fighting style and
  • vulnerabilities.

You might want to list the strengths and weaknesses of each character or you might want to read up on the histories of the heroes and their battles. After 15 minutes we will reconvene as a class to list the attributes that each table has considered and to tally the Superman vs Batman votes. May the best superhero win.

Further discussion: The Batman vs Superman battle can help to illustrate the relationship of science and engineering. This coupling is particularly apt in Biological Engineering because so much of the natural living world (Biology = Superman?) remains to be discovered and understood, while at the same time engineers are working evermore to make new tools and products (Biotechnology = Batman?). To further examine the coupling between science and engineering, we'll consider the history of humans and flight. Our conversation in class will consider both natural flying systems (e.g., birds) as well a man-made flying objects!

  1. birds inform swarmbots or birds inform plane designers
  2. robotic fly
  3. 777 wing load test
  4. flying dude
  5. Kitty Hawk, NC 100 years later

Before leaving lecture today, complete your response log entry. In your response, you should note:

  • what the activity was
  • why you think it might have been included in this class
  • if the activity helped you think about:
    • ways to make biology easier to engineer
    • consequences of successfully engineering biology
    • clever ways nature solves physical challenges
    • ways nature innovates
  • if the activity has given you any new tools/considerations that could be useful for your project.

Upload these responses to the lecture response log in the homework dropbox that's here

Follow-up homework

Spend 20 minutes watching Janine Benyus present "12 sustainable design ideas from nature." You'll notice that she is not lobbying for biology to do our bidding, but rather for our technology developers to learn more from nature's ingenious solutions. You'll also notice that she doesn't actually get through 12 ideas but here is a partial list of natural adaptations that designers might mimic:

  1. Self-assembly, e.g. the work of Jeff Brinker and that at the Sandia Nat'l Labs
  2. Biomineralization, e.g. the work of Joanna Aizenberg at Lucent
  3. CO2 as feedstock, e.g. the work of Geoff Coates at Cornell
  4. Solar transformations, e.g. using purple bacteria as they do at ASU
  5. The power of shape, e.g. the whale's fin as studied by Frank Fish
  6. Water harvesting, e.g. the way the Stenocara beetle does, as described by the Biomimicry Guild
  7. Separation techniques, e.g. metals without mining at MR3
  8. Green chemistry, e.g. as described in the Presidential Green Chemistry Challenge
  9. Timed degradation, e.g. as applied to vaccine stability

After watching the video, consider which kind of natural adaptation is the most interesting to you and follow the associated link to read more about it. Then spend 20 minutes writing an email job request to a person associated with that effort. In your email you should introduce yourself, talk about your MIT education and if/how it has helped you explore this area of interest, say what precisely intrigues you about this approach and what you are asking for (e.g. a summer job/a phone conversation/a newspaper interview/a preprint of an article...). Upload your email to the homework drop box that's here
Total time to spend on this assignment <1 hour.

Week 4 Studio

Nip and Tuck

In today's studio, project teams will be assigned. These teams are loosely grouped around common interests, be they project areas or project approaches. Once you have assembled into your groups, be sure to introduce yourselves, exchange contact information and figure out which interests landed you on the same team. Then you can use the rest of the studio time to work on your team's "facebook" page. The required content for this page is:

  • a name for your team
  • the names of your team members
  • the names of your team mentors (20.902/947 students who will be the go-to folks for questions and guidance on your project)
  • what challenge your team will address
  • what ideas you have agreed to work on (at least 3, no more than 5)

As you develop your ideas, you might also want to keep in mind the requirements for your "3 ideas presentations" that will take place in two weeks. Think about what you will have to present, and how you would like to present it. Maybe the work could/should be divided up or maybe you need to hash out ideas on the spot together. You will use the remaining time today and all of next week studio time to make real progress on these high level questions about your project. At a minimum, today's work should allow include your team's Facebook page getting uploaded to the Team Project section of the homework dropbox that's here.

Week 4 Thursday

Challenge: Backyard Biology

Cookin' up some DNA in your kitchen

  1. Pour ~20 ml of water into a small white cup
  2. Add 1/4 tsp wheat germ and mix with a coffee stirrer for 3 minutes
  3. Add one glop of liquid soap and mix a little bit every 1 minute for 5 minutes
  4. Add 1/4 tsp meat tenderizer and mix
  5. Add 1/2 tsp baking soda and mix
  6. Allow the slurry to settle and pour some of the top liquid into a clear cup
  7. Dribble some rubbing alcohol down the side of the cup so it sits on top of but does not mix with the wheat germ liquid
  8. Over the next 5 minutes watch to see what happens at the interface between the wheat germ liquid and the rubbing alcohol
  9. Try to scoop out some of the goop with a paper clip hook

Lego™phoresis

This design is a variations of the one shown in MAKE magazine, volume 07

Part 1: Cast your gel

Materials

  • small plastic container
  • scissors
  • masking tape
  • legos
  • agar-agar
  • running buffer
    • 1 L bottled water
    • pinch of table salt
    • 1/2 tsp baking soda
    • Aquarium pH kit to check pH 7.5
    • adjust with more water or baking soda as needed
  • microwave

Design

Cut ends off small container and tape closed
Arrange Lego™s for casting wells
Melt 2tsp agar-agar with running buffer and pour gel ~1cm thick. Lego™ casting wells should be embedded in agar-agar while liquid but not touch bottom of container
Once gel has solidified, remove Lego™s, tape and add DNA with glycerin/red food coloring

Part 2: Run your gel

Materials

  • steel wire
  • large plastic container
  • loading buffer
    • 1/4 tsp glycerine/glycerol
    • a few drops red food coloring
    • DNA you isolated from wheatgerm
  • remaining running buffer from part 1
  • 9V batteries
  • Aquarium antimicrobial (ideally 2.3% methylene blue diluted 1:100 in bottled water) to stain DNA in gel after run
9V batteries in series to power DNA through the gel

Follow-up homework

You can find the term "biohacking" increasingly tossed into conversations and presentations. There are examples ranging from "how to" websites to an MIT commencement address. Begin your follow-up work from today's lecture by reading Freeman Dyson's 2007 New York Times article in which he writes about "our biotech future." He foresees a domestication of biotechnology that will dominate our lives for the next 50 years. He foresees an "era of Open Source biology (in which) the magic of genes will be available to anyone with the skill and imagination to use it." Based on your backyard biology experience today, what do you think of the present and future possibilities of biohacking? As a point of comparison you might consider the hacking of the iPhone. Here are some other questions you might consider as you think about this topic:

  • Who can hack computers and who can hack biology?
  • Are there speed, safety, and training considerations?
  • Do you expect to see garage biotechnologists in your lifetime? Do they already exist? Should they?

Decide for yourself if biohacking is confirmed, plausible or busted and then post your ideas, examples and opinions to the homework drop box that's here