20.109(F12): WF Blue pre-proposal

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(References)
Line 26: Line 26:
==References==
==References==
-
Hi
+
1. N. Hoiby, T. Bjarnsholt, M. Givskov, S. Molin, O. Ciofu. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents Vol 35, 322-332
-
====
+
2. T. K. Lu and J.J. Collins. Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences Vol 104. No 27.
 +
 
 +
3. M.E. Cortes, J.C. Bonilla, R.D. Sinisterra. Biofilm formation, control and novel strategies for eradication. Science against microbial pathogens: communicating current research and technological advances.
 +
 
 +
4. National Institute of Health. Research on Microbial Biofilms. 2002, 12.20.
 +
 
 +
5. Z. Liu, J.T. Robinson, S.M. Tabakman, K. Yang, H. Dai. Carbon materials for drug delivery& cancer therapy. Materialstoday Vol 14, 316-323
 +
 
 +
6. Y. Pan, N.G. Sahoo, L. Li. The application of graphene oxide in drug delivery. Expert Opin. Drug Delivery (2012) 9(11):1365-1376
 +
 
 +
7. J. Azeredo and I.W. Sutherland. The Use of Phages for the Removal of Infectious Biofilms. Current Pharmaceutical Biotechnology, 2008, 9, 261-266.
 +
 
 +
8. A. Gajewicz, B. Rasulev, T.C. Dinadayalane, P. Urbaszek, T. Puzyn, D. Leszczynska, J. Leszczynski. Advancing risk assessment of engineered nanomaterials: Application of computational approaches. Advanced Drug Delivery Reviews Vol 64, 1663-1693
 +
L. Gravitz. Turning a new phage. Nature Medicine 18, 1318-1320.
 +
 
 +
9. E.M. Ryan, M.Y. Alkawareek, R.F. Donnelly, B.F. Gilmore. Synergistic phage-antibiotic combination for the control of Escherichia coli biofilms in vitro. FEMS Immunology & Medical Microbiology Vol 65 Issue 2.
 +
 
 +
10. T. Kaur, N. Nafissi, O. Wasfi, K. Sheldon, S. Wettig, R. Slavcev. Immunocompatibility of Bacteriophages as Nanomedicines. Journal of Nanotechnology Vol 2012, Articile ID 247427

Revision as of 05:14, 29 November 2012

20.109(F12): Laboratory Fundamentals of Biological Engineering

Home        People        Schedule Fall 2012        Assignments        Lab Basics        OWW Basics       
DNA Engineering        System Engineering        Biomaterials Engineering              

Contents

Investigators

20.109(F12) Pre-Proposal: Degrading biofilms by engineered enzymatic bacteriophage via functionalized graphene

Project Summary

Bacterial biofilms, composed of microorganisms embedded in a matrix of extracellular polymeric substances (EPS), exhibit antibiotic resistance, presenting a problem in controlling biofilm-associated clinical infections. Previous research on biofilm control has shown phage therapy to be effective in disrupting the biofilm[ref]. We propose to use modified graphene oxide (GO) as a carrier to facilitate the delivery of engineered bacteriophages in order to improve the degradation of biofilms.

Introduction

ONE PARAGRAPH and at least TWO REFERENCES

  • What is known about this field
  • Why is this field important

Idea

TWO PARAGRAPHS
Make clear what you see is the structural hole/gap in understanding or the need, and how you propose to fill in or satisfy what you've identified. You should specify your general approach (e.g. "will screen for mutants that enhance the contrast of the bacterial photography system") but do not need to think through the precise experimental details yet. Emphasize instead what results hope to collect and how they might improve the shortcomings that you've identified as interesting.

Figure

References

1. N. Hoiby, T. Bjarnsholt, M. Givskov, S. Molin, O. Ciofu. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents Vol 35, 322-332

2. T. K. Lu and J.J. Collins. Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences Vol 104. No 27.

3. M.E. Cortes, J.C. Bonilla, R.D. Sinisterra. Biofilm formation, control and novel strategies for eradication. Science against microbial pathogens: communicating current research and technological advances.

4. National Institute of Health. Research on Microbial Biofilms. 2002, 12.20.

5. Z. Liu, J.T. Robinson, S.M. Tabakman, K. Yang, H. Dai. Carbon materials for drug delivery& cancer therapy. Materialstoday Vol 14, 316-323

6. Y. Pan, N.G. Sahoo, L. Li. The application of graphene oxide in drug delivery. Expert Opin. Drug Delivery (2012) 9(11):1365-1376

7. J. Azeredo and I.W. Sutherland. The Use of Phages for the Removal of Infectious Biofilms. Current Pharmaceutical Biotechnology, 2008, 9, 261-266.

8. A. Gajewicz, B. Rasulev, T.C. Dinadayalane, P. Urbaszek, T. Puzyn, D. Leszczynska, J. Leszczynski. Advancing risk assessment of engineered nanomaterials: Application of computational approaches. Advanced Drug Delivery Reviews Vol 64, 1663-1693 L. Gravitz. Turning a new phage. Nature Medicine 18, 1318-1320.

9. E.M. Ryan, M.Y. Alkawareek, R.F. Donnelly, B.F. Gilmore. Synergistic phage-antibiotic combination for the control of Escherichia coli biofilms in vitro. FEMS Immunology & Medical Microbiology Vol 65 Issue 2.

10. T. Kaur, N. Nafissi, O. Wasfi, K. Sheldon, S. Wettig, R. Slavcev. Immunocompatibility of Bacteriophages as Nanomedicines. Journal of Nanotechnology Vol 2012, Articile ID 247427
Personal tools