20.109(S14):Phylogenetic and primer analyses (Day7): Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
Line 4: Line 4:


==Introduction==
==Introduction==
Molecular phylogeny, or phylogenetics, is used to study relationships among organisms. The most common approach these days involves examining nucleic acid sequences or protein data from specific genetic loci; frequently the goal is to define data down to the species level. All life forms on earth trace back to a few organisms that lived billions of years ago and all share a common descent. Groups of organisms that are closely related to each other diverged from more recent shared common ancestors. Phylogeny remains one of the only effective means of describing these relationships, which can be difficult to assess by other means.
The goals of phylogenetics are to 1) reconstruct the correct genealogical relationship between organisms/genes/sequence data and 2) to estimate their divergence since sharing a common ancestor. The process of phylogenetic reconstruction relies heavily on correct comparison of the traits under question, whether it is morphological data (such as wing lengths) or sequence data. For sequence data, comparison is made by the alignment of a set of orthologous sequences, which we will do in lab from the 16s rRNA gene.
Today, we have a choice of algorithms (distance-based, neighbor-joining, parsimony, likelihood, and other) for reconstructing a phylogenetic tree that depicts the relationships among aligned sequences. A number of models for defining how the mutations between sequences (genetic substitution) are assessed are also available. Each of these methods and models has advantages and disadvantages, which are closely considered (ideally!) in any formal published phylogenetics study. In the world of microbial community analysis, a popular choice is the neighbor-joining method (Saitou and Nei, 1987), which is one of the methods that deals most accurately and consistently with large data sets. Regardless of the best method, however, the result -- a reconstructed phylogenetic tree -- has proven to be an extremely useful qualitative and often even quantitative tool for examining the relationships among organisms.
EXPAND


==Protocols==
==Protocols==

Revision as of 08:43, 3 January 2014


20.109(S14): Laboratory Fundamentals of Biological Engineering

Home        Schedule Spring 2014        Assignments       
Module 1        Module 2        Module 3              

Introduction

Molecular phylogeny, or phylogenetics, is used to study relationships among organisms. The most common approach these days involves examining nucleic acid sequences or protein data from specific genetic loci; frequently the goal is to define data down to the species level. All life forms on earth trace back to a few organisms that lived billions of years ago and all share a common descent. Groups of organisms that are closely related to each other diverged from more recent shared common ancestors. Phylogeny remains one of the only effective means of describing these relationships, which can be difficult to assess by other means.

The goals of phylogenetics are to 1) reconstruct the correct genealogical relationship between organisms/genes/sequence data and 2) to estimate their divergence since sharing a common ancestor. The process of phylogenetic reconstruction relies heavily on correct comparison of the traits under question, whether it is morphological data (such as wing lengths) or sequence data. For sequence data, comparison is made by the alignment of a set of orthologous sequences, which we will do in lab from the 16s rRNA gene.

Today, we have a choice of algorithms (distance-based, neighbor-joining, parsimony, likelihood, and other) for reconstructing a phylogenetic tree that depicts the relationships among aligned sequences. A number of models for defining how the mutations between sequences (genetic substitution) are assessed are also available. Each of these methods and models has advantages and disadvantages, which are closely considered (ideally!) in any formal published phylogenetics study. In the world of microbial community analysis, a popular choice is the neighbor-joining method (Saitou and Nei, 1987), which is one of the methods that deals most accurately and consistently with large data sets. Regardless of the best method, however, the result -- a reconstructed phylogenetic tree -- has proven to be an extremely useful qualitative and often even quantitative tool for examining the relationships among organisms.

EXPAND

Protocols

For next time

Reagent list

write something here or not accessible to edit

Somewheres here: Somewhere later (D7?): We might ask: If two microbiomes are phylogenetically different, but functionally equivalent, does that mean they will be susceptible or resistant to similar pathogens? What do differences in microbiome structure mean for a bird’s ability to carry influenza virus, microsporidia, giardia species, or other gull associated microbes?