20.109(S13): Final Project WFRedBlue: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(New page: '''Page for W/F Team Red/Blue Final Project''')
 
No edit summary
Line 1: Line 1:
'''Page for W/F Team Red/Blue Final Project'''
'''Page for W/F Team Red/Blue Final Project'''
== W/F Red/Blue Team Final Project ==
== Topic and Focus ==
----
""Topic:"" Cellular Programming and Biosensors
""Specific focus:"" Using biosensors to refine and amplify cellular logic gates
==Background==
----
1.  http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11149.html
- Implements boolean logic gates: NAND, XOR, and N-IMPLY, half-subtractor, half-adder
- Gradual disassembly of transcriptional / translational components exhibited characteristics of simpler logic gates
- Individual components can be rewired into combinatorial structures (modular)
- Novelty: all components of logic gates contained in one cell (opposed to others which incorporate intercellular signaling)
- Goal: Perform therapeutic calculations in animal metabolism
2. Synthetic circuits integrating logic and memory in living cells[1]
    In order to generate complex, state-dependent responses, it is necessary to be able to incorporate logic functions and memory stores. In this study, researchers used recombinases to create Boolean logic functions and DNA-encoded memory on live E. Coli cells. The purpose of this is to be able to create cellular networks capable of producing certain responses given input signals. Furthermore, DNA storage could present a new way of long-term storage, due to the cells self propagation and the stability of DNA.
[1] Siuti, P., Yazbek, J., & Lu, T. K. (2013). Synthetic circuits integrating logic and memory in living cells. Nature Biotechnology, 1–6. doi:10.1038/nbt.2510
3. (Potentially useful review article)  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564264/
Details/Methods:
- Fluorescence Assay
- Cell Viability Assay
-
Predicted Outcomes:
- Engineered tunability of logic gate sensitivity to threshold concentrations of an input substance
Necessary Resources:

Revision as of 09:42, 8 May 2013

Page for W/F Team Red/Blue Final Project

W/F Red/Blue Team Final Project

Topic and Focus



""Topic:"" Cellular Programming and Biosensors ""Specific focus:"" Using biosensors to refine and amplify cellular logic gates

Background


1. http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11149.html

- Implements boolean logic gates: NAND, XOR, and N-IMPLY, half-subtractor, half-adder - Gradual disassembly of transcriptional / translational components exhibited characteristics of simpler logic gates - Individual components can be rewired into combinatorial structures (modular) - Novelty: all components of logic gates contained in one cell (opposed to others which incorporate intercellular signaling) - Goal: Perform therapeutic calculations in animal metabolism

2. Synthetic circuits integrating logic and memory in living cells[1]

    	In order to generate complex, state-dependent responses, it is necessary to be able to incorporate logic functions and memory stores. In this study, researchers used recombinases to create Boolean logic functions and DNA-encoded memory on live E. Coli cells. The purpose of this is to be able to create cellular networks capable of producing certain responses given input signals. Furthermore, DNA storage could present a new way of long-term storage, due to the cells self propagation and the stability of DNA.


[1] Siuti, P., Yazbek, J., & Lu, T. K. (2013). Synthetic circuits integrating logic and memory in living cells. Nature Biotechnology, 1–6. doi:10.1038/nbt.2510

3. (Potentially useful review article) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564264/


Details/Methods: - Fluorescence Assay - Cell Viability Assay - Predicted Outcomes: - Engineered tunability of logic gate sensitivity to threshold concentrations of an input substance

Necessary Resources: