clear all; clc; close all; global kml dml kpl dpl kb1 kb2 kmo dmo kpo dpo Km n; %add in hill parameters kml = 1; dml = 1; kpl = 1; dpl = 1; kb1 = 0.8; kb2 = 0.2; kmo = 1; dmo = 1; kpo = 1; dpo = 1; Km = 0.5; n = 2; %start at 1 1 2 because: 1 1: Steady state of Lac, since it is constitutive %Vary the 2 value (initial amounts of IPTG) and see what is going to happen %to the protein output: As you can see overshoot in production which %decreases when you stop adding in IPTG. %Maybe add an external IPTG term to see how production varies and %kickstarts accordingly %Vary: amounts of IPTG %Dissociation constants accordingly %Promoter leakiness? Observations why do we get basal levels of %encapsulation? [T,Y]= ode45('m1_circuit', [0 100], [1 1 2 0 0 0]); figure(1); subplot(2,3,1);plot(T,Y(:,1)); subplot(2,3,2);plot(T,Y(:,2)); subplot(2,3,3);plot(T,Y(:,3)); subplot(2,3,4);plot(T,Y(:,4)); subplot(2,3,5);plot(T,Y(:,5)); subplot(2,3,6);plot(T,Y(:,6)); i=1; for IPTG=0:1:10 [T1,Y]= ode45('m1_circuit', [0:0.1:100], [1 1 IPTG 0 0 0]); A(:,i)=Y(:,1); B(:,i)=Y(:,2); C(:,i)=Y(:,3); D(:,i)=Y(:,4); E(:,i)=Y(:,5); F(:,i)=Y(:,6); i=i+1; end %order: [dMlacdt; dPlacdt; dIPTGdt; dlacIPdt; dMoutdt; dPoutdt]; figure(2); subplot(2,3,1);plot(T1,A);title('MLac');xlabel('time'); subplot(2,3,2);plot(T1,B);title('PLac'); subplot(2,3,3);plot(T1,C);title('IPTG'); subplot(2,3,4);plot(T1,D);title('IPTG-LacI complex'); subplot(2,3,5);plot(T1,E);title('Mout'); subplot(2,3,6);plot(T1,F);title('Pout');legend('I=0','I=1','I=2','I=3','I=4','I=5','I=6','I=7','I=8','I=9','I=10');