DASBrick: MSc Bioinformatics 2009/10, Luke Tweedy

DASBrick: A DAS server and client for managing Biobricks

Luke Tweedy

ABSTRACT

Synthetic Biology is a fast-growing area of research and the Biobrick, the

 standard for genomic parts in the field, has made the synthesis of novel biological systems far easier. Current efforts are hampered by the centralisation of all public information at the MIT Registry of Parts, which can be difficult to use and can contain unreliable information.

The Distributed Annotation System, or DAS, provides a means of distributing information without the problems associated with a single central server and, with the increase in services provided by cloud computing, economic barriers to setting up DAS servers have all but vanished.

This project describes a model DAS server, specific to Synthetic Biological information, the methods by which such a server can be placed in the cloud using Google App Engine, and a DAS client which can be used to visualise the information.

1: Introduction

1.1: Synthetic Biology

Synthetic biology is the application of engineering principles in the construction of biological systems. Applied to the design of a genome, interesting genomic features can be treated as components in the genetic analogue of a circuit. Such an approach has been used in the production of a huge range of genetically engineered machines which exhibit completely novel combinations of stimulus and response, and provides a valuable testing ground for current theories regarding the interactions of various genomic elements. Synthetic organisms have been used in drug synthesis[2] and in the targeted invasion of cancer cells[3]. Studies are being done to lay the foundation of multicellular synthetic systems[4][5], and it has also lead to a greater understanding of the fundamental requirements of life, with attempts at the construction of a minimal organism[6].

As with any field of Engineering, standardisation of components, methods and of data is crucial to its expansion, allowing unconnected groups to develop the technology whilst maintaining compatibility, improving upon the reliability of models and ensuring that experiments are simple to repeat and to validate.

1.2: Biobricks

Biobricks provide a means of standardisation for the parts used in the construction of synthetic biological systems. A DNA sequence of interest is inserted into a plasmid and bounded by a set of restriction recognition sites (specifically, EcoRI-HF, Xbal, Spel, Pstl) such that each biobrick can be placed either upstream or downstream of another, and that the composite is itself a biobrick. Biobricks are stored as a plasmid in a vector which can be distributed to interested parties (Synthetic Biology labs or participants in the annual iGEM competition at MIT). The production process is simple and systematic and the range of available parts is growing.

[image: image1.png]BioBrick Base Vector

C

BioBrick Part

Mixed site

“eh4 D

e

Promoter
RBS
Codingregion
Terminator
Plasmid

Composite

Initiates transcription

Ribosome Binding Site

Code for the protein described by the sequence
RNA sequence causing transcription to stop
Replicate independent of chromosomal DNA

Composed of 2 or more biobricks

Figure 1.1: The Biobrick.

A) A biobrick is made up of a sequence of interest (a part) contained within a plasmid which separately has an origin of replication and an antibiotic resistance marker.

B) The part is flanked by the restriction recognition sites EcoRI-HF (E), Xbal (X), Spel (S), and Pstl (P), allowing biobricks to be ligated and rejoined in any combination, with the composite itself still a biobrick.

C) Types of Biobrick currently found in the MIT registry of Parts (See section 1.4).

1.3: The DAS

The Distributed Annotation System (DAS)[7], is a means of making sequence and annotation information publicly available without relying on a single well-curated central server. It consists of a large number of servers, with the contents of each server maintained separately, and a set of clients which can draw information from any set of servers and collate it.

DAS servers are all registered with a single DAS registry, however the information is simply a list and the registry is not responsible for the contents of each registered server. Consequently, very little maintenance of the central registry is required. Clients can then access a complete list of registered DAS sources in order to discover the features of available servers and choose those which are useful. Each DAS request returns an XML document of a standard format, with information from multiple DAS servers interpreted in the same manner. The information can be collated and presented altogether.

The DAS is a web-based client-server system, with clients communicating with servers via http requests to a number of well-defined extensions to the DAS server's root url. The majority of the information is accessed using an ID code for a specific genomic position, usually the start of a feature of interest, passed to the DAS server as a parameter. A list of these ID codes and their positions is also available from the server.

Many DAS clients are available, often with specific niches. Spice[8] is a popular tool for gathering protein annotations, and CARGO[9] is specific to information on cancers. No clients currently specialise in synthetic part information.

Numerous extensions have been made to the DAS system in order that it be more applicable to specific areas of biology, many of which have over time been worked into the core specification[10]. Though independently written, the design philosophy of DAS has even been adopted for the distribution of astronomical data[11].

1.4: The MIT Registry of Parts

Currently available parts are almost universally catalogued in the MIT Registry of Standard Biological Parts[12] and institutions involved in the synthesis of systems using biobricks make the information available here. Since the inception of the biobrick concept, the MIT registry has been the primary, and until recently the sole, public repository of such information, though recently the JBEI Registry[13] associated with UC Berkley has become available.

Though an invaluable resource, the Registry of Parts has a number of drawbacks which have been identified by its users:

· The quality of annotation for individual entries is highly variable, with numerous parts providing no graphical summary and little more than sequence information.

· Annotation of parts must be performed entirely manually, with no extra information provided by external sources.

· The update of a biobrick in the registry does not automatically update any composite biobricks which contain it.

· Searching the registry and finding a desired part without knowledge of its part number can be an arduous process, as the registry only supports browsing by one parameter at a time.

1.5: Cloud Computing

With access to the internet ubiquitous and high-speed connections becoming quicker and cheaper, the rise in prominence of internet-based services is unsurprising. Though applications are still commonly installed on the computer of the user, high data rate Internet access allows information processing to be handled 'in the cloud'- on powerful computers located away from the user, in places where the electricity and real-estate costs are low.

Google App Engine[14] is a recent addition to the ranks of such internet services. It supplies developers with a development kit, storage space in the cloud and a public platform on which their program can be deployed. This is beneficial to the developer as:

· The applications are publicly available with all data processing handled by Google.

· The developer is also free of the need to purchase and maintain expensive hardware.

· There is no charge for small scale applications and, if the application is successful, extra storage space, bandwidth and processor time can be purchased from Google based on demand.

App Engine originally became available in 2008, with support for Python-based programs. With the addition of the jetty server, support has now been extended to applications written in java, though support for java applications is still in beta.

1.6: Available Programs

Numerous programs exist for dealing with synthetic biological data. A number, such as BioJade[15] and TinkerCell[16, 17] are primarily design tools, allowing the user to pull parts from a local mySQL database and connect them, with the hypothetical product displayed like a circuit diagram. Modelling algorithms are used to predict the behaviour of such composites.

BrickIt[18] is a tool for managing part information. The program is designed for the management of work-in-progress parts not yet ready to be released into the public domain. A database is created locally, with numerous straightforward filters available for searching when looking for a given part.

The JBEI Registry is a newly formed public registry for biobricks and though it currently has very few available parts (at the time of review, 19 parts were available) it will, no doubt, grow. The interface improves upon that at MIT, with searches using multiple filters available. More strikingly, an internal blast tool is available, so alignments of a sequence of interest can be made against currently parts.

2: Methods

2.1: Project Overview

DASBrick consists of two quite separate parts; a DAS server in the cloud and a desktop application which acts as a client. The server is deployed on Google App Engine, using the Google Datastore as a source of information, and implements a version of the DAS modified to better suit synthetic part information. The web based portion of DASBrick also contains a GUI front written using Adobe Flex which can be used to upload and manage parts for its respective database.

The desktop application, also written using Flex, is a tool for the visualisation of synthetic parts using information provided by any parts server implementing DAS, with additional functions specific to those extensions made in the server-side part of the project.

[image: image2.emf]
Figure 2.1: Project Map.

Something like this, only not total crap

2.2: Aims

The aim of the server-side part of DASBrick was to determine if the new resources made available by the emergence of cloud computing could be used to create a functional parts database and a means of distributing the information without the need for local hardware to support the server.

The objective for the desktop application development was to pull together the information made available through the DAS servers, as well as through the existing DAS implementation for the Parts Registry at MIT, and display it in a clear, intelligible manner. It was also to overcome the problems of the Parts Registry, such as the poor search and filter methods accessible from the main page.

2.3: Modular Development

The group took a modular approach to the design of DASBrick. In addition to the clear divide between the two primary parts of the project, the internal structure of each part was subdivided into separate functional components. The use of Adobe Flex strongly supports such a programming style (See 2.5.1), with functional components written separately and placed afterwards in an overall application.

This programming philosophy has many advantages: The system is far more extensible, with changes made more easily for the support of additional features; individual modules can be reused in different systems if they perform valuable tasks, and the design team is provided with a very simple means by which to divide labour.

2.4: In the Cloud

Commonly, web applications provide information from a relational database on a locally maintained server, with client interactions governed by a proxy webserver. Early project plans had the group designing a schema compatible with BioSQL which could be run on such a system. This was subsequently altered to work with the Google Datastore.

2.4.1: The Datastore

The Google Datastore is an object-oriented database, implementing the Java Data Object API. An entry consists of a number of data which are assigned to the variables of an instance of a java class. This object is then stored in, or 'persisted to', the database. The data are recalled not as elements in rows, but by using a pointer specific to the object to which they belong.

Interactions with the datastore are governed by an instance of the Persistence Manager Class, generated by a call to the Persistence Manager Factory, and any alteration of information in the datastore is performed with a transaction, an object encompassing all the processes which need to happen in order for a change to be made. This can be used to undo any changes made in a given interaction in the event of an error, protecting the data from corruption.

The datastore is schemaless, as entities of the same class do not have to share the same set of properties in order to be persisted. Consistency in the datastore is instead achieved through strong control of the input of data. In the case of the parts database, persistent classes have a well-defined set of variables and their constructors can only be called with complete information.

Three persistent classes were used in the database: Biobricks, Features, and Relationships. The relationship between the Biobrick and Feature objects is many-to-many, with a biobrick able to hold many parts and a given part able to appear in any number of biobricks and even in the same biobrick multiple times. Each feature has a location in the biobrick which must also be committed to the datastore.

In order that these relationships are properly mapped, instances of the joining class Relationship are used. Such instances store keys for their respective Container and Part classes, as well as a co-ordinate value for the location of the part within the container. The Part and Container classes store lists of keys for relationships with which they are associated.

2.4.2: The DAS Server

The DAS server deployed to App Engine was designed to meet the basic DAS format, but was extended such that it would better meet the needs of a client interested in Synthetic Biological information.

[image: image3.emf]Figure 2.2: Available DAS requests.

The DAS requests available from the DASBrick server and used by the DASBrick client.

The list of entry points contains an additional attribute within the xml tag containing the description supplied by the datastore user, if any, upon submission of the part. Also, rather than being limited to a list of all entry points, requests can be made for entry points containing a feature of a certain ID or of a particular type.

2.4.3: The Cloud GUI

Though bulk management of persisted information can be achieved by anyone with administrator access to the App Engine account on which the server is deployed, this ready-made interface is useful only for the creation and deletion of class instances in the datastore and does not allow the relationships between the objects to be set.

A GUI written in flex enables individual users of the parts database to input parts and features one at a time, as well as to construct relationships between objects already persisted to the database. The GUI invokes the public methods of a local POJO (Plain Old Java Object) in a flex method known as 'remoting'. The POJO then manages the persistence of objects, with flex receiving only that information which is returned to it.

In order for flex to make sense of any objects returned by the POJO, a strict set of type relationships had to be adhered to. Adobe has made a list of types in Java and the types in Actionscript to which they can be cast available[19].

The communication of flex with the POJO is managed by a Data Services system. A number are available, with the commercial option being Adobe LiveCycle[20]. BlazeDS[21] and GraniteDS[22] are open source alternatives. A discussion of the second and third systems can be found in (3.4: Choice of Data Services Method).

2.5: The Desktop Application

The desktop application is comprised of three primary parts: A main display, a Parts List and a Blast component, with the second and third written as flex custom components and acting as data sources for the first. The modularity of these components means that they are capable of processing their tasks independently of the application into which they are placed, with communication between components achieved by dispatching custom events indicating the completion of a task. Actionscript events may be passed within the scope of the object dispatching them; to itself and to its children, or may have the 'bubble' property set to true, making them detectable to the entire application. Upon detecting one of these bubbly custom events, the main display contacts a set of public variables in the appropriate component in order to receive its data.

Though the search and filter features require information currently specific to the modified DAS server of DASBrick, the application was written with no special attachment to a given data source. Information from the current DAS server at MIT can be browsed, albeit with a limited search capacity, and any server set up along the same lines as that of this project can be used without modification.

2.5.1: Development Language

The initial consideration in producing the application was the choice of development language. Adobe's user-friendly development tool Flex Builder was chosen for development. The development is object-oriented and the languages used by flex are Actionscript 3 and mxml. It provides a number of pre-built components which are useful in the production of a GUI, and compiles the developer's code either to a .swf file which can be read by any browser with Adobe Flash, or to an installation file which can be opened using Adobe AIR.

Flash has long been used in the development of web-based graphics and animation and with a greater market presence even than Java[23], it is fast becoming a standard for the development of Rich Internet Applications. In addition, the ability to functional components separately for later integration fits well with the modular design philosophy the group hoped to maintain.

2.5.2: The Parts List

The Parts List component is used for managing the DAS sources from which the application draws its information. The list is initially blank and DAS sources are added and deleted by the user. The list is maintained between sessions as a cookie on the user's computer.

[image: image4.emf]Figure 2.3: Flow Diagram for the Parts List component.

The DAS list interacts with a server via http requests. A user may choose to add a completely new source, search a list by feature or feature type, or select a given biobrick for viewing in the main display, prompting a bubble event (an event visible across the scope of the whole application) to be dispatched.

To add a source, the user inputs the root url of the DAS server and a tag by which it can be remembered. With the addition of each source, an instance of the custom class DasList is created. The class extends the standard dataGrid object, adding a local HTTPService object which will be used to contact the server particular to the list, along with a public ArrayCollection from which the data collected form the source can be read. Graphically, the DasList object is identical to the datagrid. It can be used for browsing parts, searching by ID and, if provided by the server, searching by description.

The HTTPService object of each source is a public variable, allowing the main display to contact it directly when searching by contained feature or feature type, as these filters require a different http request to be performed.

2.5.3: The Blast component

The Blast component is designed to perform QBLAST searches and to assign the data to public arrays for access by other processes. The component has a single public method which takes the query sequence as a string argument. Calling this method starts the blast procedure automatically. Program, e-value and maximum hitlist size can be set using the user controls the top of the component.

[image: image5.emf]Figure 2.4: Significant methods and variables for the Blast component

Some of the more important methods and variables in processing the blast request, with their types and descriptions

Checks on progress are made every five seconds. The delay is important as continuous checking would be taken for spamming NCBI and would result in the user's IP being blocked.

The responses are first processed as text, with a regular expression searches used to determine if the job has been processed. This first request is to test the water- If the request is still processing, the returning object will be an HTML page and a request for XML at this stage will cause the component to register an http fault.

If the text “Status=READY” is found within the text response, this indicates that the process is complete. An XML version of the result is then requested and used to populate two public ArrayCollection objects, and a bubble event is dispatched indicating that these are ready to be read by the application. Some data of interest are also displayed in a table within the component.

[image: image6.emf]Figure 2.5: Flow of the Blast component

The user starts by inputting a sequence. The Arrays ArrayCollection and BlastArray are public variables and can be read by other components. A bubble event is an event visible across the entire application, rather than just within the scope of the component.

The XML document is spread across two ArrayCollection objects because its complicated structure makes it hard to use with certain flex components. Rather than being a simple list, each hit contains a subtree in the xml tag <hsps>. This is because a given hit may contain multiple local matches interrupted by non-matching regions. For the sake of simplicity, only the strongest matching hsp is used in the visualisation.

If the component is busy with a different request when fed a sequence, it stores the sequence until the request with which it is busy requires local action, at which point it can be abandoned without fear of further chatter from NCBI. The stored sequence is then sent to be processed and any information returned from NCBI is sure to pertain to it.

2.5.4: The main display

The primary function of the main display is to provide the user with a clear graphical representation of a biobrick of interest. Upon selection of a specific biobrick from the Parts List, the main display creates a reference bar against which an annotation can be created. Any available subfeature information provided by the relevant DAS source is aligned against the reference bar. Sequence information is passed to the blast component and significant hits are also aligned appropriately.

[image: image7.emf]Figure 2.6: Flow of DASBrick Client.

A simple flow diagram for the client-side part of the DASBrick project. Essential steps are highlighted in blue, and some sample optional steps are highlighted in grey, though many possible activities have been omitted.

The main display also contains the search components which can be used to narrow down the list of biobricks displayed by the Parts List. Beyond simply searching by ID, the list can be filtered by biobrick type, the presence of a given feature and by any key words found in the description provided by the user who submitted the part.

3: Discussion

3.1: The DAS Server

A drawback of the MIT Registry of Parts is that, when updating information for a given biobrick, the composite biobricks which contain it remain unchanged.

An attempt was made create an inheritance structure such that Biobricks could be treated as features also. This would overcome the need for a biobrick to be represented twice, once as an instance of Biobrick, once as Feature. Updates to the Biobrick class would then be reflected in any container. App Engine does not currently support a full implementation of the JDO API (See Java Support for App Engine) and such a structure could not be implemented. As a consequence, for any update to be registered in containers, a corresponding instance of type Feature must be updated too.

3.2: The location of the Client

The initial aim was to develop the client as an RIA, also deployed on App Engine, which could be accessed by any number of interested parties, with cookies maintained which would determine user-specific settings. This was found to de difficult to achieve. Attempts at direct communication with other web-based resources were impossible as flash programs require the presence of two crossdomain.xml files describing trusted domains when making remote connections, one local to the program and one to the target.

The use of a locally hosted java servlet which acted as a proxy overcame the security issues but was found to be inflexible; either the servlet was incapable of making parametered http requests which would severely limit the ability of the client to access data, or a number of servlets had to be written with hard-coded addresses which would reduce the scope of the application to those resources already known to the development team, with no scope for extension without rewriting and rebuilding the program.

[image: image8.emf]
Figure 3.1: Problems with proxies.

A) The url of the server is supplied by the flex client and the proxy can communicate with any location, however the parameter object is polluted with an unwanted term. Certain kinds of requests cannot be processed.

B) Normal parameter objects are passed to proxies, with each proxy specific to a single destination. The information retrieved is useful but the scope is limited, as newer data sources are inaccessibl;e without rewriting the project.

For these reasons it was decided that the resource should instead be made available as a desktop application. Actionscript was kept as the development language as its event-based structure makes the coordination of distant resources simple. The flex SDK also supports the production of Adobe AIR applications, action script based programs which are specifically designed for desktop use.

3.3: Java Support for App Engine

App Engine is currently in beta and certainly has some limitations that give it the feel of a 'work in progress' platform. The first concern in using Java on App Engine is the restricted set of classes with which a developer can work. The restrictions have been put in place as a temporary answer to potential security problems. The App Engine documentation provides a class white list for reference[24].

In designing the relationships of objects in the datastore, some features of the Java Persistence API were found to be unavailable in App Engine[25], specifically:

· Unowned relationships.

· Owned many-to-many relationships.

· "Join" queries (Searching parents by the property of a child).

· The persistence of variables on a superclass.

With support for neither unowned nor owned many-to-many relationships, the relationships had instead to be stored in the two participating classes not as lists of pointers to instances, but as lists of keys which can be used to fetch relationship objects from the datastore. These objects then contained the position of the child and they keys of both child and parent, which can again be used for fetching the relevant instances. Though this affects the load time when making reference to the parent from the child or vice versa, the relationships rarely need to be loaded in sufficient bulk for the difference to be significant.

The join query limitation did not affect performance. Where the properties of the child are important, queries can be performed on the Feature class- the children in relationships. Parents can then be found through the relationship objects. The bug preventing the persistence of variables on a superclass is to be fixed in a future release.

The java-based dasobert[26] DAS client, capable of maintaining a list of DAS sources from which to draw its information, was modified for use as a remote object in a similar manner to the java servlets in order to solve the Flash security issue. The client operated locally, but could not be deployed to the cloud as its communication with distant DAS servers requires the creation of additional threads, a programming style not supported by App Engine.

A final concern was traffic; though Google offers free hosting for applications with light traffic, were a single instance of a such a web-based application to gain popularity it would become expensive to maintain.

3.4: Choice of Data Services Method

The data services GraniteDS and BlazeDS were tested, with GraniteDS being chosen. It proved to be the simpler method to make compatible with App Engine, with the service being available following the inclusion of a set of libraries and the customisation of a number of XML documents within the project folder. BlazeDS, another open source project with support from Adobe, required similar modifications and, in addition, the modification of the 'flex.messaging.io.amf.AbstractAmfInput' class, as it uses a class not currently found on App Engine's white list.

GraniteDS has other advantages over Blaze; It supports lazy loading- deferring the load of information until requested, which removes any danger of wasting App Engine CPU time on unwanted processes, and supports singleton services- the instantiation of the remote object once only in the lifetime of the application. Given the long load time and high CPU cost for the instantiation of the Persistence Manager Factory class, this greatly improves the performance of the GUI.

3.5: The Client

The client application successfully meets its primary aim, displaying information from multiple sources and making it accessible though a single interface. Some improvements have been made on the MIT specification:

· In combination with the extensions made to the DAS, searches based on multiple criteria can be performed. As the MIT DAS server does not have these extensions, information supplied will not benefit from this.

· Annotation information is supplied, with external information provided automatically by the blast component. As the information comes form NCBI, it does not rely on the user for updates.

· The output is quite consistent, with a similar graphical display and blast information supplied for all parts.

'Contained feature' and 'type' filters are treated differently by the client to those by ID and description, performing additional HTTP requests to the DAS server rather than filtering a local array collection. The difference to the end user is simply that they must be entered in their entirety, rather than filtering further with every key stroke. As either of these quantities would be meaningless short of being entered as a whole, this does not seem unusual, and the divide should be quite unremarkable to the end user.

Available parts information from the DAS server at MIT loads successfully, with the descrption field that would otherwise show information supplied by the extended DAS implementation simply left blank. Feature and Blast alignments work as normal.

The modular structure of the client means that the Parts List and blast component could be easily reused in other applications, with the blast component in particular having clear uses outside of the scope of this application. The main display itself relies on the presence of the Parts List and, owing to this dependence, the application cannot be claimed to be strongly modular, however this has little effect on the extensibility of the project, as new modules could still be easily incorporated.

3.6: Project Structure

Unlike tools such as BrickIt and BioJade, which are explicitly local, the project allows a group to keep a publicly available parts database. The choice of a DAS client-server system gives the user complete control over their data and makes DASBrick more attractive than a single, central registry such as those of JBEI or MIT. The system also gives the user the freedom to browse biobricks created by any group who choose to create a server and the individual data sources do not become so large as to make curation difficult.

4: Conclusions and Suggested Extensions

4.1: The Server

As the development of App Engine continues, the structure of the datastore may be improved. If unowned relationships are supported in the future, the current system of key storage could be replaced with the standard JDO style.

Better support for composite biobricks would be desireable. In order that updates are reflected in all containers, the sequence for the region occupied by a child should be dictated by the child, and modified accordingly in all parents. Were such an extension made a checking system should be put in place such that, upon the inclusion of a biobrick as a feature in a composite, the user is notified if any difference in sequence for the region exists.

The DAS implementation has been extended to better fit the needs of DAS clients interested in synthetic part information, with descriptions supplied by /entry_points queries and new handlers created for queries by contained feature and feature type. The process for such extension is easily repeatable and additional handlers could be added, though the current client would not take advantage of any such additions.

The MIT registry currently supports a scheme for the users of a given part to review it- information which is currently unavailable via our server. The Wikipedia-like setup of the Parts Registry main page lends itself well better to the display of comments on performance and of course on compatibility, as crosstalk between parts is a common problem. There would be no technical barrier to feeding such information to a client so long as the client were designed to read it, however. At the very least, a voting mechanism could be created on the GUI which would update a score value for given parts.

The JBEI Blast feature allows a user to use a known sequence of interest to find biobricks of similar sequence within the database. The possibility of setting up a local blast server for the App Engine datastore should be investigated.

4.2: The Client

The client currently communicates reliably with DAS sources supplying information on synthetic parts supplied in the correct format. Due to the ease with which flex components can be written, other information sources could be introduced with little work needed to make them compatible. Any extensions do of course depend on reliable data sources. Current alignment information made available through NCBI may open the door to the inclusion of DAS sources of different types, for example finding and displaying information on protein structure for significant hits on coding regions. Other extensions should be made parallel to those made in the server in order to take full advantage of the data available.

5: References

[2]Dae-Kyun Ro, Production of the antimalarial drug precursor artemisinic acid in engineered yeast, Nature 440, 940-943 (13 April 2006)

[3]Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2005) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355: 619–627

[4] M.B. Miller and B.L. Bassler, Quorum sensing in bacteria, Annu Rev Microbiol 55 (2001), pp. 165–199.

[5] T. Bulter, S.G. Lee, W.W. Wong, E. Fung, M.R. Connor and J.C. Liao, Design of artificial cell–cell communication using gene and metabolic networks, Proc Natl Acad Sci USA 101 (2004), pp. 2299–2304.

[6] Pennisi E (2005) Synthetic biology. Synthetic biology remakes small genomes. Science 310: 769–770

[7] The Distributed Annotation system: http://www.dasregistry.org/
[8] Spice: http://www.efamily.org.uk/software/dasclients/spice/
[9] Ildefonso Cases et al. CARGO: a web portal to integrate customized biological information, Nucleic Acids Research, 2007, 1–5

[10] Andrew M Jenkinson et. al, Integrating biological data – the Distributed Annotation System, BMC Bioinformatics 2008, 9(Suppl 8):S3

[11] Rajendra Bose, Robert G. Mann, Diego Prina-Ricotti AstroDAS: Sharing Assertions across Astronomy Catalogues through Distributed Annotation

[12] The Registry of Standard Biological Parts: http://partsregistry.org/Main_Page
[13] The JBEI Registry: https://www.jbeir.org/
[14] Google App Engine: http://code.google.com/appengine/
[15] Biojade: http://web.mit.edu/jagoler/www/biojade/
[16] Tinkercell Homepage: http://www.tinkercell.com/
[17] Deepak Chandran, Frank T Bergmann and Herbert M Sauro, TinkerCell: modular CAD tool for synthetic biology, Journal of Biological Engineering 2009, 3:19

[18] BrickIt: http://brickit.wiki.sourceforge.net/
[19] List of types at: http://livedocs.adobe.com
[20] Adobe LiveCycle: http://www.adobe.com/products/livecycle/
[21] BlazeDS: http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/
[22] GraniteDS: http://www.graniteds.org
[23] Taken from Statowl: http://statowl.com/plugin_overview.php
[24] Class White List: http://code.google.com/appengine/docs/java/jrewhitelist.html
[25] Google JDO guide: http://code.google.com/intl/en/appengine/docs/java/datastore/usingjdo.html
[26] Dasobert: http://www.spice-3d.org/dasobert/
16

