
 

 

 

 



Modeling Three-Dimensional Spatial Regulation

of Bacterial Cell Division

by

Satya Nanda Vel Arjunan

Bachelor of Engineering in Electronics Engineering
Universiti Teknologi Malaysia, 2000

Master of Science in Computer Science
Universiti Teknologi Malaysia, 2003

Submitted to the

Graduate School of Media and Governance

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at

KEIO UNIVERSITY

December 2009

© Satya Nanda Vel Arjunan 2009. All rights reserved.



To my wife



A B S T R A C T

Many important cellular processes are regulated by reaction-diffusion (RD)

of molecules that takes place both in the cytoplasm and on the membrane.

To model and analyze such multicompartmental processes, we developed

a lattice-based Monte Carlo method, Spatiocyte that supports RD in vol-

ume and surface compartments at single molecule resolution. Stochasticity

in RD and the excluded volume effect brought by intracellular molecular

crowding, both of which can significantly affect RD and thus, cellular

processes, are also supported. We verified the method by comparing sim-

ulation results of diffusion, irreversible and reversible reactions with the

predicted analytical and best available numerical solutions. Moreover, to

directly compare the localization patterns of molecules in fluorescence

microscopy images with simulation, we devised a visualization method

that mimics the microphotography process by showing the trajectory of

simulated molecules averaged according to the camera exposure time. In

the rod-shaped bacterium Escherichia coli, the division site is suppressed

at the cell poles by periodic pole-to-pole oscillations of the Min proteins

(MinC, MinD and MinE) arising from carefully orchestrated RD in both cy-

toplasm and membrane compartments. Using Spatiocyte we could model

and reproduce the in vivo MinDE localization dynamics by accounting

for the previously reported properties of MinE. Our results suggest that

the MinE ring, which is essential in preventing polar septation, is largely

composed of MinE that is transiently attached to the membrane indepen-

dently after recruited by MinD. Overall, Spatiocyte allows simulation and

visualization of complex spatial and reaction-diffusion mediated cellu-

lar processes in volumes and surfaces. As we showed, it can potentially

provide mechanistic insights otherwise difficult to obtain experimentally.

Keywords: MinDE, diffusion, stochasticity, crowding, multicompartment
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1I N T R O D U C T I O N

Molecular systems biology is a field that is concerned with understand-

ing the processes in a cell as a unit rather than as the sum of its parts

(Ideker et al., 2001; Kitano, 2002). Since the processes involve a network of

biomolecular interactions, direct reasoning or intuition alone may not be

adequate to understand them, and computational modeling and analysis,

which are the integral parts of systems biology, become necessary. As

shown in Figure 1.1, methods for computational modeling correspond to

the level of abstraction or specificity of a system (Ideker and Lauffenburger,

2003). At the top level of abstraction, where qualitative features of a system

are usually represented by the model, statistical mining techniques such as

hierarchical clustering (Eisen et al., 1998; Brown et al., 2000) and artificial

intelligence approaches such as support vector machines (Ramaswamy

et al., 2001) help to reveal the key components of the model and potential

interlinks by connecting dependent with independent variables. In the

network, the conditional dependency of a child node on a parent can

be determined using Bayesian networks (Sachs et al., 2002, 2005) while

Boolean (Huang and Ingber, 2000) and fuzzy-logic models (Ressom et al.,

2003) help to predict the logical rules regulating the dependencies. At a

lower level of abstraction, where quantitative information of the system is

more relevant, hidden Markov models (Riley et al., 2008) can probabilisti-

cally model the creation, removal and interconversion of molecular species

and states, whereas when we are concerned with the rates of biochemical

reactions, ordinary differential equations (ODE) (Bever, 2008; Boyce, 2008)

can be used. Finally, at the bottom level abstraction, the structural infor-

mation of the system and the dynamic localization of molecules, resulting

from diffusion and intracellular transport, can be modeled using spatial

modeling methods such as partial differential equations (PDEs), spatial
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introduction

Gillespie, lattice-based approaches, Brownian dynamics and molecular

dynamics (reviewed in Takahashi et al., 2005; Ridgway et al., 2006).

Components and
connections

Influences and
information flow

Mechanisms

Structure and
spatial localization

Specified
Low-level models
More quantitative

Abstracted
High-level models
More qualitative

Statistical mining

Bayesian networks

Markov chains 

Boolean and fuzzy logic

Ordinary differential equations

Lattice-based

Molecular dynamics

Brownian dynamics

Spatial Gillespie

Partial differential equations

Physical rules

Models

Figure 1.1: Computational modeling methods corresponding to system
abstraction levels. The prominent computational methods to model a sys-
tem are listed in the Models column. The methods are arranged according
to the abstraction levels of the target system, as shown by the blue arrow.
Highly abstract methods are listed at the top while increasingly specified
models are arranged toward the bottom. The left column shows the type of
information that can be gathered at various abstraction levels (indicated by
the red arrow) using the corresponding methods. Highly specified models
suffer from high computational cost although more detailed information
can be gathered. Hence, as the methods become less abstract, the size
of the target system needs to be reduced to cope with the increasing
computational cost. Adapted from (Ideker and Lauffenburger, 2003) with
permission from Elsevier, © 2003.

Some of the fundamental processes in the cell, such as cell division and

signaling, require models with the lowest level of abstraction because they

are strongly dependent on the structural information and the dynamic

location of molecules. In the rod-shaped bacterium Escherichia coli for

example, the Min system of proteins (Lutkenhaus, 2007), comprising

MinC, MinD and MinE, oscillates from one pole to the other to direct the

position of division to the middle of the cell long axis. By dividing in

the middle, the cell ensures equal distribution of its contents to the two
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introduction

daughter cells. The proteins can oscillate in the presence of ATP because of

the carefully orchestrated reaction and diffusion in the cytoplasm and on

the inner membrane of the cell. As a result, without reaction, diffusion and

the structural information of the cell, it is not possible to model the system

accurately. Recently, computational models showed that although the

proteins were initially uniformly distributed in the cell, the stochasticity

in reaction-diffusion (RD) triggers the oscillation (Fange and Elf, 2006).

In signaling processes, extracellular cues captured by receptor proteins

on the cell membrane are transduced inward to regulate target proteins or

gene expression. Molecular diffusion and the signal transduction reactions

are the two interconnected underpinnings of the cellular response to the

cues. The biophysical properties of the cell structure and environment

can influence diffusion, and by introducing non-linear delays, contribute

to the overall signaling characteristics of the system. The significance of

diffusion in RD systems is pronounced when reactions are comparatively

faster than diffusion rates, i.e., the reactions are diffusion-limited. To this

end, the Stokes-Einstein relation (Einstein, 1905) indicates that proteins,

which are the key components in the signaling, have a slow diffusion rate

because they are dense macromolecules. The phosphorylation state of

target molecules with spatially separated membrane protein kinases and

cytosolic phosphatases also depends heavily on diffusion (Kholodenko

et al., 2000). In addition, subcompartments diffusively formed by localized

proteins can significantly alter the effects of noise on signaling (Bhalla,

2004), implying the important coupling of noise and diffusion.

Very high protein density in the intracellular space, commonly called

molecular crowding, can magnify the spatial effects. In a typical cell,

the total macromolecular density is 50-400 mg/ml (Fulton, 1982), much

higher than typical in vitro values of 1-10 mg/ml. If identical globular

proteins occupy 30% of the volume of a solution, less than 1% of the

remaining space is available to an additional molecule of the same size

because of steric repulsion (Zimmerman and Trach, 1991). The mutual
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1.1 spatial modeling methods

impenetrability of macromolecular solutes is called the excluded volume

effect. In such environments, the observed translational diffusion rate of

proteins is about 5-20 times slower than in saline solutions (Elowitz et al.,

1999). The anomalous diffusion, defined as sub-linear scaling of mean-

squared displacement of the molecule over time, is used as a measure for

cytoplasmic crowding (Weiss et al., 2004). Molecular crowding can also

alter protein activities and reaction kinetics (Ridgway et al., 2008). For

reviews about the influence of molecular crowding on thermodynamics

and volume exclusion, including experimental findings and biochemical

reactions in physiological media, see (Minton, 2001) and (Hall and Minton,

2003).

Taken together, cellular processes involving molecular interactions that

are tightly dependent on RD and spatial features of the cell require low-

level and highly specific modeling methods. The methods should not

only incorporate RD and structural information, but also the effects from

molecular crowding and stochasticity in the simulations. In the next section,

we review the features of existing spatial modeling methods.

1.1 spatial modeling methods

Spatial modeling methods can be broadly categorized into molecular

dynamics, PDEs, Brownian dynamics, lattice-based and spatial Gillespie.

Figure 1.2 illustrates the different kinds of approaches used by the methods

to incorporate space when modeling a system, while Table 1.1 summarizes

their features. We briefly discuss the methods in the following subsections.
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1.1 spatial modeling methods

A

B

C

F

E

D

Particle Space Discrete Space Mesh Space

Compartmental

Figure 1.2: Spatial representation schemes. In particle space, molecules
are represented as individual particles with positions in a continuum space.
(A) Particles are usually given motions according to some kind of force
equations that are numerically integrated to advance time. Reactions are
represented as collisions between particles. (B) Some methods including
GFRD employ an optimization technique that allows particles to jump in
time and space by calculating the maximum distance ∆r that the particle
can travel in the time slot. Discrete space representation discretizes the
space either by subvolumes (voxels) of an identical shape (typically cubic)
or a regular lattice. (C) In this microscopic lattice, at most one particle is
allowed to occupy a lattice site. (D) Some methods allow multiple particles
to reside in a single lattice site. This class of discrete space representation
is called mesoscopic. (E) Mesh space here means conventional structured
or unstructured meshing schemes of a concentration field. (F) Nonspatial
biochemical simulators usually make use of compartmental space, which
assumes a chemical equilibrium in each compartment, and molecular
transfers between compartments are not modeled as implicit built-in rules
in the simulation method (such as diffusion), but in an explicit way such
as membrane transporters. Adapted from (Takahashi et al., 2005) with
permission from the Federation of European Biochemical Societies, © 2005.
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Table 1.1: Features of spatial modeling methods.

Method Spatial Spatial Temporal Stochasticity Excluded Multi

Representation Scale Evolution Volume RD

Virtual Cell (Schaff et al., 2001) Gradient Macro DES - - +

MCell (Stiles and Bartol, 2001) Continuum+Mesh Micro+Meso DT + - +

MesoRD (Elf and Ehrenberg, 2004) Lattice Meso DEV + - +

Smoldyn (Andrews and Bray, 2004) Continuum Micro DT + - +

SmartCell (Ander et al., 2004) Lattice Meso DEV + - +

GFRD (van Zon and ten Wolde, 2005a) Continuum Micro DEV + + -

GMP (Rodríguez et al., 2006) Lattice Meso DEV + - +

Cell++ (Sanford et al., 2006) Continuum+Gradient Micro+Macro DT + - +

CyberCell (Ridgway et al., 2008) Continuum Micro DT + + -

GridCell (Boulianne et al., 2008) Lattice Micro DT + + -

STEPS (Wils and Schutter, 2009) Mesh Meso DEV + - +

eGFRD (Takahashi et al., 2009) Continuum Micro DEV + + -

Spatiocyte (this work) Lattice Micro+Meso DT+DEV + + +
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1.1 spatial modeling methods

Table 1.1: Features of spatial modeling methods (cont.). This table,
adapted and updated from our review in (Takahashi et al., 2005), summa-
rizes the features of current computational methods employing spatial rep-
resentations to model biochemical pathways. Spatial Representation: in
continuum space, molecular species are represented by individually treated
discrete molecules that can move freely in a compartment, whereas in
lattice space, discrete molecules occupy and move between regular subvol-
umes or voxels within a lattice. Mesh space represents discrete molecules in
irregular triangulated (MCell) or tetrahedral (STEPS) surfaces, or tetrahe-
dral volumes (STEPS). Gradient space denotes lattice (Cell++) or mesh (Vir-
tual Cell) discretization scheme of the species concentration field. MCell
uses continuum and mesh spaces for volume and surface molecules respec-
tively, whereas Cell++ employs continuum and gradient spaces for large and
small molecules respectively. Spatial Scale: in microscopic methods, each
instance of molecule is distinguished from others and modeled as an object
with a position either in continuum or lattice space. Macroscopic schemes
represent the species state as a concentration gradient. There are many
possible mesoscopic schemes between macro and micro realms. Mesoscopic
methods in this table treat molecules discretely, but do not track positions
in a compartment or within a subvolume. Temporal Evolution: simulation
time-stepping scheme. DEV, DT, and DES mean event-driven, time-driven,
and numeric solution of a continuous differential equation system, respec-
tively. Stochasticity: if the method is stochastic. Excluded Volume: if the
method can reproduce the excluded volume effect brought by molecules
with physical dimensions in a crowded compartment (Zimmerman and
Trach, 1991; Minton, 2001; Hall and Minton, 2003). Multicompartmental
RD: if the method can perform RD in volumes and on surfaces, and
between volume and surface compartments.

1.1.1 Molecular dynamics

Motions and interactions regulating all molecules constituting the cell arise

from fundamental physical rules. By computing the forces affecting every

molecule from many-body potentials in a particle space (Figure 1.2A) and

numerically integrating Newton’s laws over a small discrete time-step, the

molecular dynamics (MD) approach can potentially be used to compute

the macroscopic behavior of molecules in a system (Allen and Tildesley,

1989). However, the computational cost of MD simulation increases linearly

7



1.1 spatial modeling methods

with the number of interacting atoms (Rottler and Maggs, 2004). Despite

being the most accurate and fundamental approach (Koplik and Banavar,

1995), MD cannot be used to simulate whole cell systems, which consist of

very large number of atoms arising from macromolecules. It has only been

used in problems involving time-scales of nanoseconds and space-scales of

tens of nanometers. For example, it was employed to illustrate the effects

of crowding in a cell on a small number of molecules (Baynes and Trout,

2004; Friedel and Shea, 2004).

1.1.2 Partial differential equations

Whereas the MD simulation approach deals with reaction and diffusion at

the molecular level (i.e. microscale), the spatial partial differential equa-

tions (spatial PDEs) approach computes the intracellular kinetics at the

macroscopic level. The Virtual Cell (Schaff et al., 1997, 2001; Slepchenko

et al., 2003) employs PDEs with the finite volume method (Smith, 1986) to

perform reaction and diffusion of mobile molecules in its spatial simula-

tion framework. Compartments in the framework can depict the spatial

structures of the system. These compartments are further divided into

finite subvolumes through a mesh-generator (Figure 1.2E), and numeri-

cal methods are used to solve the differential equations. Finer time-step

and subvolume sizes produce more accurate solutions but with higher

computational overhead. Despite being one of the most computationally

scalable spatial simulation algorithms, PDEs cannot accurately represent

intracellular noise because it is a deterministic approach. Noise has pro-

found implications especially when the number of molecules is small, as

in the case of transcription factors (Rao et al., 2002). Moreover, noise is

further amplified in finite subvolumes such as the one used by the Virtual

Cell because molecule numbers in each subvolume will be smaller than

when they are taken as a whole (Bhalla, 2004). Therefore, stochastic based

simulation approaches should be considered in such conditions. Next, we

8



1.1 spatial modeling methods

look at other methods which are more sophisticated than spatial PDEs,

but unlike MD, are still computationally tractable.

1.1.3 Brownian dynamics

Brownian dynamics (BD) is a stochastic modeling approach employing con-

tinuum space and time. In this particle based approach (Figure 1.2A), the

molecules exhibit noise as they are propagated according to the Langevin

equation (Coffey et al., 2004). The equation contains random forces that

are intended to represent the interaction between the diffusing and the im-

plicitly represented solvent molecules. BD has been applied successfully to

investigate electrostatic competition effects between substrates binding to

an enzyme (Elcock, 2002) and to observe how crowder molecules influence

the GroEL-GroES chaperonin machinery at the atomic scale (Elcock, 2003).

Hence, this approach can effectively simulate crowded environment, given

that the crowder molecules are explicitly represented in the simulation

space. Such representation, however, will incur very high computational

costs, owing to the increased frequency of collision events and the smaller

time-steps required to resolve them.

BD can be viewed as a numerical procedure to solve the Smoluchowski

equation (von Smoluchowski, 1917), which describes the diffusive en-

counter of molecules in solution. On the other hand, for two-body prob-

lems, it is possible to analytically solve the equation by using the Green’s

function (Economou, 2006). This approach was adopted by van Zon and

ten Wolde (2005a,b) when they developed an event-driven simulation

algorithm called Green’s function reaction dynamics (GFRD) (Figure 1.2B).

The basic idea is to reduce the many-body problem that constitutes the

biochemical system into a set of two-body problem by determining the

length of the time step to be sufficiently small. Although GFRD permits

larger time-steps when the particles are too far apart to react, this ad-

vantage is lost when simulating crowded environments. This is because

9



1.1 spatial modeling methods

GFRD retains the drawbacks of BD, which is the dependency of step siz-

ing scheme to the frequency of collision events. Nonetheless, this method

can represent the excluded volume effect and represent different sizes

and shapes of molecules. Smoldyn is another approach to numerically

realize the Smoluchowski model of diffusion-limited reactions (Andrews

and Bray, 2004). The molecules are represented as point particles (Fig-

ure 1.2A) with binding and unbinding radii, which are computed from the

macroscopic reaction rate of each species. A disadvantage of discrete-time

approaches in continuum space such as Smoldyn is that it is possible to

miss collisions when the length of time-steps are not sufficiently small.

Smoldyn can represent reduced diffusion speed in crowded environment

by placing impenetrable blocks in space (Lipkow et al., 2005). One of

the major consequences of the excluded volume effect is the dependency

of the diffusive movements on physical sizes of the diffusing molecules.

Unlike GFRD, dimensionless particles used in Smoldyn do not permit

accurate representation of the effect. CyberCell shares the same properties

of Smoldyn but the molecules can take different sizes (Ridgway et al.,

2008). As a result, it can reproduce the excluded volume effect in crowded

media. However, unlike Smoldyn, the present version of CyberCell does

not support RD on surfaces. MCell is a another BD simulation method

that can perform RD in both volume and surface compartments (Stiles

and Bartol, 2001). For surface RD, the space is discretized into convex

polygon meshes as illustrated in Figure 1.2E, whereas for reactions in

the solution, it uses regular meshes to reduce computational cost when

resolving molecular collisions. Similar to Smoldyn, MCell cannot model

the effects of molecular crowding because the molecules are represented

as point particles.

10



1.1 spatial modeling methods

1.1.4 Lattice-based methods

The cellular automata (CA) method employs a lattice of uniform vox-

els with a finite number of states that evolves in discrete-time (Weimar

and Boon, 1994; Alber et al., 2003). The transition of each automaton

(i.e., molecule) in the voxels is fully specified by its local interaction. The

molecule can propagate either along its velocity vector or according to its

diffusion rate to arrive at another voxel, and then collide or react with

other molecules. CA can be used to simulate RD at both microscopic

(Figure 1.2C) (Berry, 2002; Schnell and Turner, 2004; Wishart et al., 2005;

Boulianne et al., 2008) and mesoscopic (Figure 1.2D) spatial scales, having

single and multiple molecules in a voxel, respectively. Using lattice-based

methods, the effects of molecular crowding can be simulated when the

spatial scale is microscopic and the size of voxels follows the molecule

size. Lattice size and geometry (e.g., square, hexagonal or trigonal) can

also influence the outcome of simulation, as reported by Shimizu et al.

(2003) when they analyzed the Escherichia coli chemotaxis signaling path-

way using a CA-based Ising model. Large differences in molecule sizes

and numbers in the cells motivated Weimar (2002) to use CA to sim-

ulate enzymatic reaction networks at both mesoscale (metabolites) and

microscale (enzymes) simultaneously on a two-dimensional lattice. This

approach considerably reduces the memory requirement, especially when

considering large systems such as the cell. The size of the voxels can be

larger to accommodate large molecules, and as a result, fewer sites will

need to be created and stored in the memory. The reduced resolution of

the lattice would, however, translate to lower precision of the molecular

diffusion at each time-step. The local interaction nature of CA makes it

suitable for implementation on parallel architectures and hence, supports

reduction in the computational time required for 3D simulations. To our

knowledge, all microscopic lattice-based methods have not successfully

modeled volume-surface RD.
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1.2 motivation

1.1.5 Spatial Gillespie

Stundzia and Lumsden (1996) extended the Gillespie’s stochastic approach

(Gillespie, 1976, 1977) to be used in subvolumes for spatial modeling. Their

method was employed to model the propagation of a calcium waves by

RD across a cell. Elf and Ehrenberg (2004) on the other hand, extended the

fast version of the Gillespie’s algorithm, the Next Reaction (NR) method

(Gibson and Bruck, 2000), to be used in subvolumes. The SmartCell (Ander

et al., 2004) and GMP (Rodríguez et al., 2006) simulators also implemented

a similar scheme. The subvolume sizes, as shown in (Figure 1.2D), are

determined such that all reactive molecular species, represented as point

particles, are almost uniformly distributed in each subvolume’s space. This

is done by ensuring that the diffusion of reactants in a subvolume takes

place more frequently (e.g., more than 100 times) than their respective

reactions. At each time-step, each molecule can either react in its current

subvolume or diffuse to an adjacent one. The diffusional probability at

each time-step is obtained by mapping the bulk diffusion constant in

Fick’s law using the Green’s function. Similar to the original NR method,

the computation time increases only logarithmically with the number of

subvolumes in the system. Nonetheless, it is not possible to reproduce

crowded conditions because volume exclusion from both reactive and

non-reactive crowder molecules cannot be represented explicitly when

they are depicted as point particles.

1.2 motivation

Ideally, spatial modeling methods should be able to run simulations with

minimal computational cost because the simulation time usually presents

as a bottleneck when a system is modeled at such high specificity. To this

end, discrete-event methods are promising because computation is only

performed at time steps when it is really necessary and as a result, larger

jumps in time is possible. In addition to stochasticity in simulation and
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1.3 thesis organization

the effects of volume exclusion, a spatial modeling method should also

be able to perform RD on the surface, and between volume and surface

compartments. This feature becomes essential when modeling cellular

processes such as the bacterial cell division. However, as can be seen in

Table 1.1, none of the present methods have all the expected features.

In this thesis, we aim to develop a new lattice-based modeling method,

called Spatiocyte, which is sufficiently fast to run many simulation runs

of actual cellular processes. The method should be stochastic and able

to model the implications of molecular crowding. RD in the volume and

surface compartments should also be supported so that fundamental

cellular processes such as the division site control in bacteria can be

modeled accurately. Results from spatial modeling efforts are usually

verified by comparing with experimental data using images of in vivo

localization of fluorescent labeled proteins. Since the images are highly

dependent on the exposure time of camera, a visualization method needs

to be developed to show the localization of simulated molecules that

mimics the output of the camera to directly and effectively compare the

result of simulations with that of experiments.

1.3 thesis organization

In the Chapter 2 of this thesis, the detailed description of the proposed

modeling method will be presented. To verify the correctness of the

method, simulation results of basic RD in volume and surface compart-

ments will be compared with analytical and numerical solutions. In ad-

dition, the new visualization method that mimics the fluorescent labeled

protein images will be presented. In Chapter 3, the implementation details

of the method using the E-Cell System will be described. The implemented

method will be used to model the Escherichia coli MinDE dynamics and

compared with the results from experiments and previous computational

studies. In Chapter 4, the method is used to elucidate the mechanism of

13



1.3 thesis organization

E-ring formation in Escherichia coli. In Chapter 5, we describe the extension

of the Spatiocyte method to model polymerization of molecules on sur-

faces such as cell and nuclear membrane. Finally, in Chapter 6, the overall

conclusions and potential future directions of the research presented in

this thesis will be provided.
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2A M U LT I C O M PA RT M E N TA L L AT T I C E - B A S E D
R E A C T I O N - D I F F U S I O N M E T H O D

Computational models are valuable to both theoretical and experimental

biologists to rapidly analyze and test their predictions about qualitative or

quantitative behavior of complex cellular processes (Ideker and Lauffen-

burger, 2003). Moreover, the models can potentially provide mechanistic

insights (Treanor and Batista, 2007; Clarke and Liu, 2008; Neves and Iyen-

gar, 2009), even in the case of relatively simple processes (Stefan et al.,

2008; van Albada and ten Wolde, 2009).

Processes that are strongly dependent on the cell morphology, multicom-

partmental interaction and dynamic localization of molecules such as cell

signaling (Rangamani and Iyengar, 2008; Neves et al., 2008), bacterial cell

division (Lutkenhaus, 2007; Adams and Errington, 2009) and chemotaxis

(Greenfield et al., 2009; Rao and Ordal, 2009), require realistic models with

spatial representation (Takahashi et al., 2005; Ridgway et al., 2006; Morris

and Jensen, 2008). The processes rely on intricately controlled reaction and

diffusion of molecules in and between cytoplasm (or nucleoplasm) and

membrane compartments to perform their functions. Excluded volume

effect brought by molecular crowding in each compartment can reduce the

macroscopic diffusion coefficient and alter reaction kinetics (Ellis, 2001;

Hall and Minton, 2003; Dix and Verkman, 2008; Klann et al., 2009). Fur-

thermore, the significance of slower diffusion in such reaction-diffusion

(RD) processes is pronounced when the reactions are diffusion-limited.

Since some of the species involved in the processes comprise small number

of molecules, stochasticity in the reactions can dominate over the law of

mass action (Gillespie, 1976; Gómez-Uribe and Verghese, 2007), and thus

affecting the macroscopic behavior of the processes (Fange and Elf, 2006;

Rangamani and Iyengar, 2008; Hansen et al., 2008).
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2.1 multicompartmental simulation space

In Chapter 1 we have looked at the prominent spatial modeling methods

with a summary of their features listed in Table 1.1. The table shows that

although a variety of methods have been developed, modeling cellular

processes at the level where multicompartmental RD, molecular crowding

and stochasticity all simultaneously come into play is still not possible

with any single method. To address this issue, in this chapter we develop

a general-purpose hybrid time- and event-driven, lattice-based Monte

Carlo simulation method, called Spatiocyte, to model processes that are

dependent on multicompartmental RD, stochasticity and the implications

of molecular crowding.

2.1 multicompartmental simulation space

In our method, molecules can participate in first- or second-order reactions,

each giving away one or two product molecules. Free molecules can

diffuse within the simulation space either on a surface or in a volume

compartment. In vivo, where the compartments are crowded, diffusing

protein molecules collide even at very small time scales (Ellis, 2001). The

advantage of fully event-driven reaction-diffusion methods to make large

jumps in time when molecules are far apart (van Zon and ten Wolde,

2005b) is lost in such conditions (Ridgway et al., 2006; Takahashi et al.,

2005). Instead, we use a time-driven, lattice-based method to skip two

costly operations – molecule search and distance calculation – required

by off-lattice methods (Andrews and Bray, 2004; van Zon and ten Wolde,

2005b; Ridgway et al., 2008) to resolve collisions. Diffusion-independent

reactions, however, are event driven to further reduce the computational

cost.

We discretized the space into a hexagonal close-packed (HCP) lattice

where each sphere voxel has 12 adjoining but non-overlapping neighbors

(Figure 2.1A). Each voxel is at most occupied by a single molecule to

account for volume exclusion and molecular crowding. The voxel radius

rv is uniform and set to the radius of individually simulated molecules.
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2.1 multicompartmental simulation space

A

B

Figure 2.1: Multicompartmental simulation space discretized into hexag-
onal close-packed (HCP) lattice. (A) A voxel in the HCP lattice (blue) has
12 adjoining neighbor voxels. (B) Cross-section of cell (teal) and nuclear
(maroon) membranes represented by immobile lipid molecules that con-
strain molecules to their respective compartment. Other colored spheres
represent molecules in their respective voxel. Various geometric primitives
such as boxes, spheres and cylinders can be used in combinations to define
compartment structures, cell shapes and intracellular geometries, which
may affect the model behavior.
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2.2 diffusion

Compared to the lattice arrangements of other reaction-diffusion methods

(Novère and Shimizu, 2001; Ander et al., 2004; Elf and Ehrenberg, 2004;

Rodríguez et al., 2006; Sanford et al., 2006; Boulianne et al., 2008), the

HCP lattice has the highest density of sphere voxels (Szpiro, 2003). To

delineate a surface compartment such as a cell or a nuclear membrane,

we occupy all empty voxels of the compartment with immobile lipid

molecules (Figure 2.1B). Analogous to in vivo, these molecules aid lateral

diffusion of non-lipid surface species, while together as an immobile

structure, sequester volume species.

In addition to the diffusing and immobile species that are treated indi-

vidually at the molecular scale, there are also homogeneously distributed

(HD) species, such as ATP, that are simulated at the compartmental scale.

We consider a species HD only if it is mobile and evenly distributed within

the compartment before its reaction events. The species can satisfy these

conditions if its reaction events are not limited by its diffusion rate. Al-

ternatively, it can have a sufficiently high concentration that, after each

reaction event, even if it has a slower diffusion rate it can rapidly attain a

homogeneous concentration before the next event. Each molecule of the

HD species is not treated individually since the compartmental concentra-

tion information is sufficient. For a biochemical species A, we denote A#

as the total molecule number in a compartment. All random numbers are

drawn independently from the uniform distribution.

2.2 diffusion

Applying the Einstein-Smoluchowski expression for diffusion
〈
r2
〉

=

2lDiτi (Einstein, 1905; von Smoluchowski, 1906), with l = 3 for volume

diffusion, a molecule i with diffusion coefficient Di can walk to a ran-

domly selected neighbor voxel in a time step τi when the mean squared

displacement
〈
r2
〉
= (2rv)

2 (Rodríguez et al., 2006). For a surface molecule,

the walk is constrained to adjoining surface voxels, l = 2 and the average
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2.3 diffusion-independent reactions

voxel-to-voxel lateral displacement is 2(2
√
2+4

√
3+3

√
6+

√
22)rv

6
√
2+4

√
3+3

√
6

≈ 1.915rv
(calculated in Figure 2.2). Thus, if ts is the current simulation time, the

next time a diffusing molecule walks is given by

tid = ts +
αirv

2

Di
, (2.1)

where αi = 2
3 or αi = (2

√
2+4

√
3+3

√
6+

√
22

6
√
2+4

√
3+3

√
6

)2 for volume or surface

species, respectively. However, a volume molecule can only occupy the

target voxel if it is vacant, otherwise a collision occurs and the walk fails.

A surface walk is only successful if the target voxel is occupied by a lipid

molecule, in which case the lipid and the walking molecule exchange

voxels; a collision occurs if the target voxel contains a non-lipid surface

species. The above scheme accurately constrains molecules to their own

compartment without geometry calculations.

Molecules sharing a diffusion coefficient Di are grouped in a diffusion

process di which executes their random walk together at tid. In long time-

scales, diffusion becomes a costly operation because of the very short

time steps required to make voxel-length random walks. To alleviate this

cost, every voxel has an address pointer to each of its neighbors as a

rapid means of access when checking for vacancy and molecule species. In

addition, only mobile molecules undergoing diffusion-influenced reactions,

usually found in small numbers, are individually diffused, while others

are simulated at the compartmental scale as HD species.

2.3 diffusion-independent reactions

A
kA−−→ product(s) is a first-order reaction with the product(s) comprising

diffusing, immobile or HD species. It can represent a unimolecular reaction,

which can be decoupled from the diffusion process since kA is only

dependent on time. It can also denote a bimolecular reaction (i.e., pseudo

first-order), involving A and an unrepresented HD species with a fixed

19



2.3 diffusion-independent reactions

Figure 2.2: Methods for determining the average lateral displacement rs
for a surface walk and the average number of voxels ns spread across an
area S. The spheres in purple, green and red show the voxel arrangement
of the HCP lattice that are delineated as surface voxels to form the planes
xy, xz and yz respectively. Some of the voxels are flatly spread (yz-plane),
while others are jagged and overlap when they represent the flat surfaces
(xy- and xz-planes). The lateral displacement of a molecule walking voxel-
to-voxel on the planes, shown as white arrows in six directions, can be
less than 2rv because of the overlaps. As a result, to calculate the surface
diffusion step interval τid (see text) we use the average lateral displacement
rs that is computed from the average displacement on the three planes,
rxy, rxz and ryz. Similarly, ns is calculated from the average number of
voxels spread across the three planes, nxy, nxz and nyz.

concentration. The reaction is decoupled from diffusion by setting kA as

the asymptotic reaction rate given by kaπRD/(ka + 4πRD), where ka is
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2.3 diffusion-independent reactions

the intrinsic reaction rate, while R and D are the contact distance and

combined diffusion coefficient, respectively.

Applying the asymptotic reaction rate, a second-order reaction involving

a HD reactant can also be decoupled from the diffusion or immobility of

the second reactant because before the reaction event, the concentration of

the HD species is the same at any location of the compartment. Likewise,

if both reactants are immobile, as long as they are in contact (via adjoining

voxels in the simulation), the rate of reaction is also unaffected. Taken

together, we can decouple diffusion from all first-order reactions, and all

second-order reactions that involve two adjoining immobile reactants or at

least one HD reactant.

We perform event-driven diffusion-independent reactions by adapting

the NR method (Gibson and Bruck, 2000), a computer-optimized varia-

tion of the Gillespie algorithm (Gillespie, 1976, 1977) that stores reaction

dependencies in a directed graph and the time of next reactions in an

indexed priority queue. The steps in an iteration of the NR method are

as follows: (i) select the reaction m with the earliest next reaction time

tmr from the priority queue; (ii) execute reaction m and update species

molecule numbers; (iii) using the dependency graph, get every reaction µ

whose propensity aµ is affected by the updated species and recompute it:

aµ =



kAA
#, A

kA−−→ product(s),

kSA
#S, A

kS−−→ product(s),

kAB
V A#B#, A+B

kAB−−−→ product(s),

kAA
V A#(A# − 1), A+A

kAA−−−→ product(s),

(2.2)

with S the surface compartment area, kS the rate of surface associations

per surface area, and V the compartment volume, which is replaced with

S if both reactants are surface species; and (iv) for each affected reaction,
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2.4 diffusion-influenced reactions

using a random number ur in the range (0,1) update the priority queue

with the new next reaction time

tµr = ts −
lnur
aµ

. (2.3)

The original method assumes all molecules to be HD species, which is

not the case in our approach. As a result, in step (ii), if m has a non-HD

reactant, we perform the reaction with a molecule selected randomly from

the reactant molecule list. A non-HD product of m replaces a non-HD

reactant at the same voxel. A second non-HD product will occupy a vacant

neighbor voxel of the first product. A non-HD product of m involving

only HD reactants is placed in a random vacant voxel of the reaction

compartment. If it is an intercompartmental reaction, the product will take

up a vacant voxel adjoining both compartments. Because reactions are

diffusion-independent, we can avoid partitioning reaction volumes like in

other Gillespie-based spatial simulation methods (Elf and Ehrenberg, 2004;

Ander et al., 2004; Rodríguez et al., 2006; Bernstein, 2005).

2.4 diffusion-influenced reactions

Only two remaining second-order reactions, involving a diffusing and

an immobile reactant, and two diffusing reactants, that are diffusion

influenced. They are modeled using a spatially discretized version of the

Collins and Kimball approach (Collins and Kimball, 1949) that assigns

a finite probability p for a reactive collision between reactants. Next, we

derive the relationship between the reactive collision probability p and the

macroscopic rate constant of various diffusion-influenced second-order

reactions.
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2.4 diffusion-influenced reactions

2.4.1 Volume reactions

Consider an elementary reaction A+B
kAB−−−→ C that is diffusion-influenced

and takes place in the HCP lattice. We first derive the connection between

p and kAB when both A and B are volume species. Since the density of

HCP voxels is π

3
√
2

(Conway and Sloane, 1998), the total number of voxels

in a compartment volume V is

nv =

π
3
√
2
V

4
3πrv

3
=

V

4
√
2rv3

. (2.4)

At the beginning of simulation, the molecules are placed randomly in

the voxels to represent a uniformly-distributed reaction volume. Molecule

collisions for A are evaluated by a diffusion process at the interval

τA =
αArv

2

DA
, (2.5)

where DA is the diffusion coefficient and αA = 2
3 because A is a volume

species. The probability for an A molecule to collide with a B molecule at

the target voxel in a small interval ∆t is

pA =
B#

nv
× ∆t
τA

,

=
B#

nvτA
∆t,

(2.6)

if nv � 1. Analogously, for each B

τB =
αBrv

2

DB
, (2.7)

pB =
A#

nvτB
∆t, (2.8)
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2.4 diffusion-influenced reactions

with αB = 2
3 . Since the collisions are evaluated for all A and B molecules,

the average number of collisions in ∆t is

Z = A#(pA) +B
#(pB),

=
A#B#(τA + τB)

nvτAτB
∆t.

(2.9)

Of these collisions, if some are reactive and ∆C is the change in the number

of product molecules, then

p =
∆C

Z
, (2.10)

=
nvτAτB∆C

A#B#(τA + τB)∆t
. (2.11)

At the macroscopic level,

d[C]

dt
= kAB[A][B], (2.12)

and in a very small ∆t within the volume V ,

∆C =
kABA

#B#

V
∆t. (2.13)

Substitutions of (2.4), (2.5), (2.7) and (2.13) into (2.24) give

p =
kAB

6
√
2(DA +DB)rv

. (2.14)

Similarly, for the homodimerization reaction A+A
kAA−−−→ C we obtain
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2.4 diffusion-influenced reactions

Z =
A#(A# − 1)

nvτA
∆t, (2.15)

∆C =
kAAA

#(A# − 1)

V
∆t, (2.16)

and substituting (2.4), (2.5), (2.15) and (2.16) into (2.10) yields

p =
kAA

6
√
2DArv

. (2.17)

2.4.2 Surface reactions

We next consider reactions that take place on the surface compartment.

As shown in Figure 2.2, the average number of voxels spread across the

compartment with an area S is

ns =
6
√
2+ 4

√
3+ 3

√
6

72rv2
S. (2.18)

For the surface reaction A+B
kAB−−−→ C, we derive p by applying the same

strategy that we used for the volume reaction but because the reactants are

surface species, αA = αB = (2
√
2+4

√
3+3

√
6+

√
22

6
√
2+4

√
3+3

√
6

)2, ns now substitutes

nv in (2.6), (2.8), (2.9) and (2.24) while S replaces V in (2.13) to get

p =
(2
√
2+ 4

√
3+ 3

√
6+
√
22)2kAB

72(6
√
2+ 4

√
3+ 3

√
6)(DA +DB)

. (2.19)

Likewise, for the surface homodimerization reaction A+A
kAA−−−→ C, we

substitute nv with ns in (2.15) and V with S in (2.16) to obtain

25



2.4 diffusion-influenced reactions

p =
(2
√
2+ 4

√
3+ 3

√
6+
√
22)2kAA

72(6
√
2+ 4

√
3+ 3

√
6)DA

. (2.20)

2.4.3 Volume-surface reactions

A volume molecule A can also collide with a surface molecule B and react

with probability p. Since each B only diffuses laterally on the surface, it

does not strike A in the volume compartment.

The number of volume voxels adjoining the surface compartment

on either side is also ns. Each of these volume voxels has three ad-

joining surface voxels. The probability for an A to collide with B at

the target voxel is Pr(the molecule A is occupying a voxel adjoining

the surface compartment)× Pr(a surface voxel is selected as the target

voxel)× Pr(target surface voxel contains B)× (number of collision evalua-

tions in the interval ∆t):

pA =
ns

nv
× 3

12
× B

#

ns
× ∆t
τA

,

=
B#

4nvτA
∆t.

(2.21)

To get p, we substitute Z = A#(pA) in (2.9) and apply the remaining

derivation steps as in the volume reaction A+B
kAB−−−→ C:

p =

√
2kAB
3DArv

. (2.22)

Finally, a volume species A can also attach itself to the surface and

become a surface species C, as in A
kA−−→ C, where kA is the surface-

average rate coefficient with dimensions of velocity (Balgi et al., 1995). In

the lattice, this is actually a second-order reaction A+B
kAB−−−→ C, where B
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2.4 diffusion-influenced reactions

is the lipid species of the surface compartment. Since each surface voxel

by default is occupied by a lipid molecule, B# = ns. To derive p for the

reaction between A and B in terms of kA, we apply the same procedure

as in the previous volume-surface reaction but we now replace B# with ns

in (2.21) and substitute ∆C = kAA
#S∆t/V in (2.13):

p =
24kArv

(6+ 3
√
3+ 2

√
6)DA

. (2.23)

In contrast to the MCell (Stiles and Bartol, 2001) and GridCell (Boulianne

et al., 2008) methods, in a time step, we only evaluate a single target voxel

for collision, reducing the computational cost by several folds.

2.4.4 Summary of diffusion-influenced reactions

In summary, for a diffusion-influenced reaction j, the relationship be-

tween pj and the macroscopic rate constant of various diffusion-influenced

second-order reactions is given as

pj =



kAB
6
√
2(DA+DB)rv

, Av +Bv
kAB−−−→ product(s),

kAA
6
√
2DArv

, Av +Av
kAA−−−→ product(s),

γkAB
DA+DB

, As +Bs
kAB−−−→ product(s),

γkAA
DA

, As +As
kAA−−−→ product(s),

√
2kAB
3DArv

, Av +Bs
kAB−−−→ product(s),

24kSrv
(6+3

√
3+2

√
6)DA

, Av(+Ls)
kS−−→ product(s),

(2.24)

where γ =
(2

√
2+4

√
3+3

√
6+

√
22)2

72(6
√
2+4

√
3+3

√
6)

. The species subscripts v and s denote

volume and surface species respectively, while L is the lipid species.
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2.5 hybrid time- and event-driven simulation

If j is diffusion-limited, a reactive collision may occur at time slices

smaller than τA, causing pj > 1 and yielding inaccurate results. Here, for

a species i that participates in J number of diffusion-influenced reactions,

we limit its reaction probabilities to a maximum value Pi, 0 6 Pi 6 1,

by reducing its diffusion process interval to τ ′i = τiPi/ρi, with ρi =

max{p1, . . . ,pJ}. Consequently, (2.1) becomes

tid =


ts +

αirv
2

Di
, ρi 6 Pi,

ts +
αirv

2Pi
Diρi

, ρi > Pi.

(2.25)

Note that if ρi > Pi, the walk probability is no longer unity because of

the reduced interval and is given as Pi/ρi. However, at each interval the

molecule can collide as usual with a neighbor reactant pair and react with

probability pjPi/ρi.

When the collision is reactive, the two reactants are removed and new

non-HD product(s) occupy the reactant or neighbor voxels, whereas for

HD product(s), only the species molecule number is updated. Since the

reactant and product molecule numbers have changed, we also perform

steps (iii) and (iv) of the adapted NR method for the diffusion-independent

reactions.

2.5 hybrid time- and event-driven simulation

We adopt the multi-timescale algorithm of the E-Cell System (Takahashi

et al., 2004) to concurrently run time- and event-driven processes (de-

scribed in Chapter 3). All n number of tid and tµr are stored in an indexed

priority queue Q, which provides tq = min{tid, tµr } and can be updated

in O(logn) (Takahashi et al., 2004). If tq = tid, di is executed and Q is

updated with a new next walk time from (2.25). If tq = t
µ
r , the steps

(ii) to (iv) of the adapted NR method are executed using Q and with
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2.6 verification of diffusion-influenced reactions

m = µ. By incrementing ts = ts + tq, we can run diffusion processes at

predefined time steps while diffusion-independent reactions are executed

in an event-driven manner.

2.6 verification of diffusion-influenced reactions

To verify the diffusion-influenced reactions of our method we employ a

similar approach as in (Ridgway et al., 2008) by comparing the simula-

tion results with the predicted survival probability of reacting species

in irreversible (Sirr) and reversible (Srev) reactions. Here, we describe the

analytical and numerical methods to obtain Sirr and Srev since they have

not been previously described for surface reactions. Where possible we

adopt the notations in (Popov and Agmon, 2001).

2.6.1 Irreversible reactions

According to the Smoluchowski theory (von Smoluchowski, 1917; Szabo,

1989; Popov and Agmon, 2001), in the irreversible reaction A+B
kAB−−−→ C

with dilute A and B, the fraction of A still surviving at time t is

Sirr(t; c0) = exp
[
−c0

∫t
0
kirr(t

′)dt ′
]

, (2.26)

where c0 is the initial concentration of B and kirr(t) is the time-dependent

rate coefficient. For volume reactions,

kirr(t) = k
′
D

[
1+

kAB
kD

Φ

(
kAB
kD

√
t

τ ′D

)]
. (2.27)

29



2.6 verification of diffusion-influenced reactions

Here the function Φ(x) = exp(x2) erfc(x), kD = 4π(DA +DB)R is the

diffusion-limited rate constant, k ′D = kABkD/(kAB + kD) is the asymp-

totic reaction rate and

τ ′D =
1

DA +DB

(
kABR

kAB + kD

)2
. (2.28)

For reactions taking place in the HCP lattice, the contact distance R = 2rv.

The time-dependent rate coefficient is only known in the Laplace space

for surface reactions,

k̃irr(s) =
kAB

s
[
1+ kABG̃(s)

] , (2.29)

where

G̃(s) =
K0(
√
sτD)

2π(DA +DB)
√
sτDK1(

√
sτD)

(2.30)

is the Green’s function for free 2D diffusion (Popov and Agmon, 2002),

obeying a reflective boundary condition at R; Kn(z) is the modified

Bessel function of the second kind for the integer order n; and τD =

R2/(DA +DB) is the diffusion-limited time constant. The transform (2.29)

is numerically inverted to obtain kirr(t) and subsequently, the survival

probability Sirr(t; c0).

2.6.2 Reversible reactions

For the reversible reaction A+B
kAB−−−⇀↽−−−
kC

C with a single target A and many

B molecules, the best known method to estimate the survival probabil-

ity Srev(t) of A is the first variant of the multiparticle kernel theories
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2.6 verification of diffusion-influenced reactions

(MPK1) (Sung and Lee, 1999). The normalized deviation of Srev(t) from

the predicted equilibrium value Srev(∞) = kD/λ, with λ = kC + c0kAB,

is obtained from the inverse Laplace transform

Srev(t) − Srev(∞)

Srev(0) − Srev(∞)
= L−1

{
F̃MPK1(s)

sF̃MPK1(s) + λ

}
, (2.31)

which is calculated numerically. F̃MPK1(s) is the diffusion factor function

of the reversible reaction according to MPK1,

F̃MPK1(s) =
kAB
λ
F̃gem(s) +

c0kAB
λ

F̃irr(s; c ′0), (2.32)

where the modified concentration c ′0 = λ/kAB, F̃gem(s) = 1+ kABG̃(s) is

the diffusion factor function for a geminate pair, while in the irreversible

case, the function is given as

F̃irr(s; c0) =
c0kABS̃irr(s; c0)
1− sS̃irr(s; c0)

. (2.33)

The reflective Green’s function in 2D is given in (2.30) whereas in 3D it is

G̃(s) =
1

kD(1+
√
sτD)

. (2.34)

S̃irr(s; c0) in (2.33) is obtained by numerically computing the Laplace

transform

S̃irr(s; c0) =
∫∞
0
Sirr(t; c0) exp(−st)dt. (2.35)
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2.7 simulating fluorescence microscopy images

2.7 simulating fluorescence microscopy images

Spatial localization patterns of molecules both in vitro and in vivo are

widely determined using fluorescence labeling experiments (Resch-Genger

et al., 2008; Fernández-Suárez and Ting, 2008; Ji et al., 2008; Huang et al.,

2009). Co-localization patterns of multiple species of molecules can also

be determined using multiple fluorescent labels. The merged localization

images show the blending of colors when the positions of the separately

labeled molecules overlap. However, the optical microscopy images suffer

from low resolution because of the diffracted light and the long exposure

time required by the camera in microphotography processes. The exposure

time of several hundred milliseconds to several seconds makes it impos-

sible to capture the position of diffusing molecules at single molecule

resolution. As a result, it is difficult to directly compare the position of

molecules obtained from spatial simulations with the microscopy images.

Here, we develop a visualization method that simulates microscopy

images by displaying the trajectory of simulated molecules averaged ac-

cording to the exposure time. We use the OpenGL programming interface

for 3D computer graphics (Shreiner, 2009) to develop the method. We

adopt the RGBA mode of OpenGL, where the colors are represented by

red, green, blue and alpha color components. The alpha color component

allows a color to be blended with the existing color at the intended posi-

tion. An alpha value of 0 implies full transparency, while an alpha value of

1 implies full opacity. The background color of the simulation space is set

to black to represent the unlit space of the microscopy image. We record

the voxel position of each molecule, regardless of its diffusion coefficient,

at each minimum diffusion step interval τm = min{τi}. For each voxel, the

number of times a molecule of a fluorescent-labeled species f has occupied

it in the exposure time τe can then be counted, and is given as Nf. To

display the trajectory of the labeled species f within the exposure time,

the alpha value of each voxel is calculated as
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a =
2Nfτm

τe
, (2.36)

while its RGB values are set to the species fluorescent color. The above

step is repeated for the remaining fluorescent labeled species. When

molecules of separately labeled species occupy the same voxel within the

exposure time, or overlap during visualization, their colors are blended

according to their opacity levels. In addition, the intensity of voxel colors

is directly proportional to the density of molecules at the position during

the exposure time, as it is the case in microscopy images.

2.8 results

2.8.1 Diffusion in volume and surface compartments is verified

Figure 2.3 shows that the mean squared displacements of freely diffusing

molecules in volume and surface compartments using Spatiocyte are

indistinguishable from expected analytic values. The diffusion of the

molecules is also correct when the walk probability Pi/ρi is less than unity

in a diffusion process interval τ ′i. Based on the results in Figure 2.3, the

multi-timescale algorithm is also verified because the diffusion of all four

species, in different compartment types and with unique combinations of

diffusion process intervals and walk probabilities, were simultaneously

and correctly simulated.

2.8.2 Reactions in volume and surface compartments are verified

For the irreversible reaction A+ B
kAB−−−→ C, it can be seen in Figure 2.4A

and 2.4B that the survival probabilities of A from simulations are in

excellent agreement with the predicted theoretical curves in both type

of compartments. The values of DA, DB and pj are chosen such that

Spatiocyte is evaluated for reactions that are minimally to maximally
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Figure 2.3: Verification of diffusion in volume and surface compart-
ments. Solid lines show the mean squared displacement of molecules
diffused according to (2.25) using the indicated parameters and averaged
over 10000 runs with independent seeds. The lines almost perfectly overlap
the predicted volume (dashed lines) and surface (dotted lines) diffusion
results from analytic solutions. At the beginning of each run, molecules are
placed randomly in their respective compartment. A cubic volume with
periodic boundaries constitutes the volume compartment, while its six
faces, covered with lipid molecules and imposed with periodic boundary
condition at the edges, form the surface compartment. When a molecule
walks over a periodic boundary, its absolute coordinate is updated to emu-
late borderless volume and surface compartments. All four species, with
unique combinations of diffusion process interval τ ′i and walk probability
Pi/ρi, were simultaneously simulated to also verify the correctness of the
multi-timescale algorithm. In both compartments, the excluded volume
effect by the molecules is negligible because they occupy less than 0.01%
of the simulated volume and surface area.

diffusion-limited. In each compartment, the multi-timescale algorithm

is also verified since the eight reactions were simultaneously performed

correctly.

Compared to irreversible reactions, reversible reactions present a harder

test to spatial modeling methods because newly dissociated molecules

that are close to each other have a higher tendency to recombine. We

performed the reversible reaction A+B
kAB−−−⇀↽−−−
kC

C with both weak (kC = 5)
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and strong (kC = 500) dissociation constants to evaluate the method.

Since the dissociation reactions are diffusion-independent, they were ex-
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Figure 2.4: Verification of irreversible reactions in volume and surface
compartments. The survival probability of A in the second-order irre-

versible reaction A+B
kAB−−−→ C, taking place in volume (A) and surface (B)

compartments is shown. Dashed curves are the predicted survival proba-
bility according to (2.26), while the solid colored curves are the simulation
results averaged over 1000 independent iterations. In each compartment,
eight reactions were simultaneously simulated with various combinations
of diffusion coefficients, DA and DB, and the reactive collision probability
pj, as indicated in the inset legend table. Each reaction involves 100 A

and 100 B molecules, with the voxel radius rv = 0.5. For the volume and
surface compartments, V = 1× 106 and S = 3.5× 105, respectively.
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ecuted using the adapted NR method. Figure 2.5A and 2.5B show the

simulation results when the reactions take place in the volume and sur-

face compartments, respectively. Taking into account the noise limits, the

results are in good agreement with the best known approximation theory,

MPK1 in both compartments, thus verifying the diffusion-independent

and diffusion-influenced reactions of Spatiocyte. In addition, as previously

reported in (Ridgway et al., 2008), mass action fails to correctly reproduce

the predicted survival probability of A for volume reversible reactions

(Figure 2.5A) because it assumes A, B and C to be HD species. Figure 2.5B

shows that mass action is also unable to reproduce the expected curves

for surface reversible reactions.

2.8.3 Spatiocyte reproduces implications of molecular crowding

We evaluated Spatiocyte to reproduce the effects of volume exclusion by

first examining the diffusion behavior of molecules in a crowded volume

compartment. We mimicked the crowded Escherichia coli cytoplasm by oc-

cupying 34% of the 1 µm3 compartment volume (Zimmerman and Trach,

1991) with inert and immobile crowder molecules. Figure 2.6A shows the

time-dependent diffusion coefficients of six species that were diffused in

the compartment. Of the six species, one is an Escherichia coli division site

control protein, MinD with the diffusion coefficient 61 µm2s−1, obtained

by fluorescence correlation spectroscopy (FCS) in a dilute solution (Loose

et al., 2008). The results indicate that the species undergo anomalous diffu-

sion (i.e., sub-linear scaling of the mean-squared displacement over time)

when the volume compartment is crowded. Corroborating the results of

previous off-lattice simulations (Ridgway et al., 2008), the time-dependent

diffusion coefficients reach equilibrium by 10−4 s, at which time they have

decreased by about a factor of two compared to dilute levels.

Using the same six species, we investigated the diffusion behavior in two

different cases of crowded surface compartment. In the first case (Figure
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Figure 2.5: Verification of reversible reactions in volume and surface
compartments. The normalized deviation of the survival probablity Srev(t)

of A from the predicted equilibrium value Srev(∞) in the second-order

reversible reaction A+B
kAB−−−⇀↽−−−
kC

C, taking place in volume (A) and surface

(B) compartments is shown. Black dashed and dotted curves are the
predicted values calculated according to MPK1 theory (Sung and Lee,
1999; Popov and Agmon, 2001) in equation (2.31), dotted colored curves
are theoretical predictions computed according to mass action, while the
solid colored lines are the simulation results. The reaction and simulation
parameters are indicated in the respective panels. In all reactions, the
impact of molecular crowding is negligible because the molecules occupy
less than 0.01% of the simulated volume and 0.8% of the surface area.

2.6B), we occupied 34% of the surface area with crowders to allow direct

comparison to the previously observed behavior in volume compartment.
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In the second case (Figure 2.6C), 23% of the surface area was occupied by

the crowders to reflect the recently determined in vivo value (Dupuy and

Engelman, 2008). The results of the first case show that the anomalous

diffusion of the surface molecules is more pronounced than the observed

behavior in the volume compartment. The elevated impact of crowding

in the surface compartment is because of the increased obstructions to

diffusion, resulting from the smaller dimensionality of the surface space

(Zhou, 2009). Interestingly in the second case, although the area occupancy

Figure 2.6: Implications of molecular crowding in diffusion and reaction
processes.
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Figure 2.6: Implications of molecular crowding in diffusion and reaction
processes (cont.). (A–C) The time-dependent diffusion coefficients at 34%
occupied volume (A), 34% occupied surface area (B) and 23% occupied
surface area (C). The diffusion coefficients are calculated from the equation
D(t) =

〈
r2
〉
/(2lt), where

〈
r2
〉

is the mean squared displacement and l is
the spatial dimensionality. Line labels show the diffusion coefficients of
six simulated species at dilute levels. (D) The survival probability of A in

the volume irreversible reaction A+B
kAB−−−→ C at various occupied volume

fractions (rounded to integer percentage). All simulation parameters are
as indicated in the respective panels.

is 23%, the surface diffusion coefficient at equilibrium (t = 10−4 s) is

almost equivalent to that of the volume at 34% occupancy.

39



2.8 results

We evaluated the effects of molecular crowding in volume irreversible

reactions. Figure 2.6D shows that the apparent survival probability of the

reacting molecules increases in line with the volume occupancy. There

are more surviving reactants at higher occupancy because their time-

dependent diffusion coefficient is reduced by the increased hindrances

from crowders. Together, these results confirm that our method can account

for some of the important implications of molecular crowding in volume

and surface compartments.

2.8.4 Spatiocyte visualization method simulates microscopy images

Figure 2.7 compares the localization patterns of simulated molecules at

single molecule resolution to the corresponding simulated fluorescence

microscopy image using the Spatiocyte visualization method. The radius

of the molecules, occupying an Escherichia coli membrane, is 10 nm while

the exposure time of the simulated image is 500 ms. Since the molecules

are very small, it is difficult to identify the patterns at single molecule

resolution. Conversely, the patterns are clearly defined in the simulated

fluorescence image because the overall trajectory of molecules during the

exposure time is shown. Co-localizing molecules can also be identified by

their blended colors.

Comparisons of actual microscopy images to the corresponding sim-

ulated images are shown in Figure 4.1C. The left column of the panel

illustrates the in vivo localization patterns of MinD and MinE from the

doubly labeled experiments by Shih et al. (2002). Using an exposure time

of 500 ms, the Spatiocyte visualization method closely reproduces the

microscopy images in both individual and overlay panels. However, the

simulated patterns are not as smooth as in the microscopy images possibly

because the diffraction of light was not considered. It is also evident that

the visualizations of single molecules do not clearly show the localization

patterns as observed in the microscopy images.
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Figure 2.7: Comparison of single molecule visualization to simu-
lated microscopy image. (A) Single molecule visualization (Top) of
MinE.MinDmATP (yellow) and MinEm (cyan) on the Escherichia coli mem-
brane compared to the corresponding simulated fluorescence microscopy
image (Bottom). The diffusion coefficients of the proteins are listed in
Table 4.1. The exposure time of the fluorescence image is 500 ms. (B) The
magnified area of the respective boxes shown in (A).

2.9 discussion

In this chapter, we developed and verified a new lattice-based method,

Spatiocyte that can model surface and volume intercompartmental RD

processes, while also being able to account for the implications of stochas-

ticity and molecular crowding arising from the physical dimensions of

molecules. To our knowledge, there is currently no single method that can

do this (see Table 1.1). We have also adopted several optimization strategies

to reduce the high computational cost associated with spatial modeling
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methods. Firstly, unlike other methods, Spatiocyte can simultaneously

simulate highly concentrated or HD species at compartmental scale and

low copy or heterogeneously distributed species at molecular scale. This

allows the method to skip diffusing each molecule belonging to the highly

concentrated species, which would incur very high computational cost.

Molecules within the two distinct spatial scales can react as usual with

each other. Secondly, the reactions involving HD species are event-driven

so that computations are performed only when necessary, thus allowing

bigger jumps in the simulation time. Thirdly, to support fast RD simula-

tion in crowded compartments, the simulation space is discretized into

hexagonal close-packed lattice that enables rapid resolving of molecular

collisions.

The obvious limitation of Spatiocyte is that the non-HD molecules have

to be almost similar in size to occupy the voxels. This presents a problem

when modeling molecules with disparate densities in a crowded compart-

ment since the size of the molecules directly influences RD. Nonetheless,

in most spatial modeling applications, the molecules are assumed to be

uniform sized. In addition, the method can also be extended to model

molecules of different sizes by occupying multiple voxels with a single

molecule according to its size. In this case, the reactive collision probability

will need to be readjusted to account for the collisions that take place at

the multiple voxels occupied by the molecule.

We also developed a visualization method that uses the temporal posi-

tional data of simulated molecules to simulate optical microscopy images

of fluorescent labeled proteins. It does this by showing the trajectory of

simulated molecules averaged according to the camera exposure time

used in the microphotography process. The method enabled us to directly

match our simulation results with the localization patterns of MinD and

MinE in Escherichia coli and make objective evaluations. Schaub et al. (2007)

have also developed a method to simulate the microscopy images but it is

intended for almost immobile, non-diffusing structures, such as actin fila-
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ments, and cannot be directly applied for diffusing molecules as required

by our method.

In our results, the 34% crowded volume compartment caused the diffu-

sion coefficient of MinD to be reduced by a factor of two to approximately

37 µm2s−1 from its dilute level of 61 µm2s−1 (Loose et al., 2008). How-

ever, the measured diffusion coefficient of MinD in the 34% crowded

Escherichia coli cytoplasm is only 16 µm2s−1 (Meacci et al., 2006). The

additional twofold reduction can be attributed to the several factors listed

by Ridgway et al. (2008), which include the intracellular viscosity and the

nonspecific binding to other molecules in the cytoplasm. This suggests

that adding crowder molecules alone may not be sufficient to reproduce

the cytoplasmic environment in a simulated model.

Our results also support the suggestion by Loose et al. (2008) that

molecular crowding on the cell membrane decreases the lateral diffusion

coefficient of MinD compared to that of in vitro. Additional reduction in

the diffusion coefficients could also be attributed to the protein oligomer-

ization and polymerization-depolymerization kinetics on the membrane.

Polymers on the membrane may also present as bigger hindrances to the

mobility of the proteins.
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3I M P L E M E N TAT I O N O F S PAT I O C Y T E W I T H T H E
E - C E L L S Y S T E M

The E-Cell System is one of the well known and advanced open-source

simulation platforms to model and analyze both small- and large-scale bio-

chemical reaction networks in living cells (Tomita et al., 1999). The driver

algorithm of the E-Cell System (version 3) supports concurrent executions

of multiple simulation algorithms, whose time steps are independently

advanced in continuous-time, discrete-time or discrete-event manner at

varying timescales (Takahashi et al., 2004). Multiple sessions of simulations,

usually required for estimation of reaction parameters and to obtain the

averaged results from stochastic reactions, can be simultaneously executed

with its distributed computing utility (Sugimoto et al., 2005; Sugimoto,

2009). Simulation runs can be automated and modified ex tempore with

Python scripting, while new simulation algorithms can be developed using

C++ and incorporated into the system as plug in modules.

Recent advances in molecular biology suggest that modeling reaction

networks alone is not sufficient to accurately reproduce certain impor-

tant cellular processes such as cell division (Lutkenhaus, 2007) and gene

expression (Talbert and Henikoff, 2006). In Chapter 1 we have reviewed

how the physical location, crowding and diffusion of molecules in cell

compartments play crucial roles in these processes.

In the rod-shaped Escherichia coli, the division site is restricted to the mid-

cell by nucleoid occlusion and the pole-to-pole oscillation of the proteins

MinC, MinD and MinE, collectively called the MinCDE system (reviewed

by Lutkenhaus (2007)). The periodic oscillation is established because of in-

tricately controlled reaction and diffusion of the proteins in the cytoplasm

and the inner membrane. A simplified model of the system is illustrated

in Figure 3.1, which includes only MinD and MinE since MinC is not

necessary for the oscillation. Division at the midpoint of the cell is impor-
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tant to ensure equal distribution of cell contents to the two daughter cells.

The MinCDE molecules, found in low copies in the cytoplasm and on the

inner cell membrane compartments, are not evenly distributed temporally.

As a result, the rate of reactions, which is determined by the frequency

of collision between reacting molecules, is influenced by diffusion and

physical localization within the compartments. The molecules undergo

surface and volume reaction-diffusion (RD) on the cell membrane and in

the cytoplasm respectively.

Current algorithm modules of the E-Cell System assume that reactions

take place between molecules that are uniformly distributed within the

reaction compartment. It is also not possible to specify the physical location

of each molecule. In this chapter, we describe the extension of the E-

Cell System to model the spatial localization and RD of molecules by

implementing the Spatiocyte method described in Chapter 2. Out of the

several available methods (see Table 1.1), ours is the only one that can

account for the important implications of volume exclusion by molecules

and RD in both volume and surface spaces. To evaluate the new approach,

we compare the simulation results of the MinDE system with the results

obtained from experiments and previous computational work.

3.1 methods

In this section, we briefly recall the proposed RD scheme in Chapter 2

before providing the details of the implementation with the E-Cell System.

3.1.1 The reaction-diffusion scheme

Molecules diffuse freely in space by making random walks (Berg, 1993).

According to the Collins and Kimball theory (Collins and Kimball, 1949),

when two reactive molecules come into contact (i.e., collide), they react with

a certain probability p, which is related to the reaction rate constant k. To

avoid molecule search when checking for collisions, we have discretized the
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Figure 3.1: The simplified oscillation model of the MinDE sytem in Es-
cherichia coli. This model is adapted from (Huang et al., 2003). MinC is not
represented because it is not essential for the oscillation. Arrows depict the
five basic reactions in the model. In the first reaction, MinDADP exchanges
nucleotide to become MinDATP with the rate k1. In the form of MinDATP,
the molecule can bind to the membrane either autonomously with the rate
k2 or cooperatively with a another membrane-bound MinDmATP at the rate
k3. Cytosolic MinE is also recruited to the membrane by MinDmATP with the
rate k4 to form MinE.MinDmATP. The ATPase function of MinD is activated
by MinE in the MinE.MinDmATP complex and consequently, MinDATP is
converted to MinDADP that cannot stay bound to the membrane. This is
represented by the fifth reaction, in which the MinE.MinDmATP complex
dissociates from the membrane at the rate k5 and forms the cytosolic
monomers MinE and MinDADP.

space into hexagonal close-packed lattice (Conway and Sloane, 1998). Each

sphere voxel in the lattice has 12 adjoining neighbor voxels. To account for

volume exclusion and molecular crowding, each voxel can be occupied by

a single molecule. The radius of the voxels is set according to the size of

diffusing molecules. A molecule can walk to a randomly selected neighbor

voxel in an interval τd following the Einstein-Smoluchowski expression

for diffusion

τd =

〈
r2
〉

2lD
, (3.1)
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where
〈
r2
〉

and D are the mean squared displacement and the diffusion

coefficient of the molecule respectively, and l = 2 for surface diffusion

while for volume diffusion, l = 3. Since in the interval τd the molecule

walks to a neighbor voxel, the mean squared displacement is given by the

lattice spacing. We have derived the spacing for surface and volume diffu-

sion, and the connection between p and k in Chapter 2. At the destination

voxel, the walking molecule may collide with another molecule that is a

reactant pair and react if an independent random number drawn from a

unit uniform distribution is less than p.

3.1.2 E-Cell System data structure and driver algorithm

The specific details of the E-Cell System data structure, driver and inte-

gration algorithms have previously been described (Takahashi et al., 2004).

We briefly provide the data structure and the driver algorithm here to

characterize the implementation of our algorithm modules. We adopt the

notations in (Takahashi et al., 2004) and capitalize the class names.

A reaction network system is represented in E-Cell as a Model, specified

by the user in E-Cell Model description language (EML), a subset of XML.

Figure 3.2 shows the data structure of the Model class, which contains a

list of state Variables and Steppers. The Stepper class is the main algorithm

module of the Model and it operates with a set of Processes, the current

local time τ and the step interval ∆τ, a step method that advances the

Stepper in time either in a continuous-time, discrete-time or discrete-event

fashion, and an interruption method that allows other Steppers to notify

the Stepper when they modify a read Variable of the Stepper. The Process is

a lower level algorithm module that directly reads or modifies the state

Variables according to the algorithm using a transition-function. Here, the

instances of the state Variables are accessed by dereferencing the Variable

References.
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Figure 3.2: The data structure of the E-Cell Model.

Central to the E-Cell driver algorithm is a priority queue that arranges

the Steppers according to the scheduled time of execution, given as τ+∆τ.

At initialization, the global time t and the local time τ of Steppers are reset.

Next, the step method of the Stepper Si with the minimum scheduled time

is called and the global time is updated to t = τi +∆τi. The step method

also sets the local time to τi = τi +∆τi and calls the transition function

of its Processes to update the state Variables. The method may also update

the next step size ∆τi and call the interruption method of other Steppers

whose read Variable has been modified. The Stepper Si is rescheduled in the

priority queue according to the new scheduled time. The same procedure

is repeated for the Stepper with the next earliest scheduled time in the

priority queue until the simulation is ended.

3.1.3 Implementation of reaction-diffusion with E-Cell

We have implemented the proposed reaction-diffusion scheme using the

E-Cell System by creating two basic algorithm modules – a Diffusion Process

and a Reaction Process. The molecules are represented as the state Variables

of the Model. For each diffusion coefficient in simulation, a Diffusion Process
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object is created to walk the molecules. Likewise, a Reaction Process object

is instantiated for every reaction involving a diffusing molecule. A discrete-

event Stepper advances the Diffusion Process in time and handles the lattice

structure and the physical location of molecules. The transition function of

the Diffusion Process walks each molecule to a randomly selected adjoining

voxel in a diffusion step interval. When a molecule collides with a reactant

pair, the transition function of the corresponding Reaction Process is called.

If the reactive collision probability is met, the Process removes the collided

molecules and replaces them with one or two product molecules, as

specified by the reaction.

3.2 application results

We modeled the oscillatory behavior of molecules in the MinDE system to

validate our approach because it involves both surface and volume RD, and

spatiotemporal localization of molecules. We describe the computational

model of the system before presenting the results of simulation.

3.2.1 The MinDE Model

In Escherichia coli, the FtsZ membrane protein initiates cell division phys-

ically by polymerizing and constricting annularly at the middle of the

long axis of the rod-shaped cell (Lutkenhaus, 2007; Löwe and Amos, 2009).

Although the protein can diffuse over the entire membrane, nucleoid oc-

clusion prevents the polymerization from taking place over the nucleoid

mass, leaving only the midcell and the two cell poles as viable locations for

polymerization (Woldringh et al., 1990, 1991; Bernhardt and de Boer, 2005).

Nonetheless, because of the inhibition by MinC proteins at the poles (Hu

et al., 1999; Hu and Lutkenhaus, 1999), the polymerization can only take

place at the midcell. During the cell cycle, MinD with the help of MinE

forms polar zones which oscillate from one pole to the other. Since MinC
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piggybacks on MinD and the oscillation occurs on the rod-shaped cell

with some dwelling time at the poles, the time-averaged concentration of

MinC at the middle of the cell is kept low, permitting FtsZ to polymerize.

According to the model by Huang et al. (2003) (illustrated in Figure 3.1),

cytosolic MinD in the ATP-bound form (MinDATP) binds to the membrane

either cooperatively with another membrane bound MinD (MinDmATP)

or independently. MinE from the cytoplasm inhibits MinDmATP by first

associating with it and setting off the ATPase function of MinD that

hydrolyzes the bound ATP to ADP. The membrane-bound MinE and the

ADP-bound form of MinD (MinDADP) then dissociate to the cytoplasm.

In the cytoplasm, MinDADP is phosphorylated and takes the form of

MinDATP again. MinC is not explicitly represented in the model because

it is usually attached to MinD and experimental data indicate that the

oscillation can take place without it (Hu and Lutkenhaus, 1999; Raskin

and de Boer, 1999). The series of reactions in the model are as follows:

MinDADP
k1−→MinDATP (3.2)

MinDATP
k2−→MinDmATP (3.3)

MinDATP + MinDmATP
k3−→ 2MinDmATP (3.4)

MinE + MinDmATP
k4−→MinE.MinDmATP (3.5)

MinE.MinDmATP
k5−→MinE + MinDADP (3.6)

3.2.2 Simulation Results

To simulate the MinDE oscillation model using the proposed approach,

we applied the parameters from (Fange and Elf, 2006) (listed in Table 3.1).

However, we reduced the radius of our voxels to more closely reflect the

size of diffusing molecules. Another variation between our method and
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the MesoRD method in (Fange and Elf, 2006) is that our molecules can

exhibit excluded volume.

Figure 3.3 shows the random distribution of cytosolic MinDADP, MinDATP

and MinE molecules at initialization. The pole-to-pole oscillation of membrane-

bound MinDmATP, as shown in Figure 3.4, is spontaneously triggered after

about 1 minute of simulated time although all molecules were initially

randomly distributed in the cytoplasm. For the 1 minute of simulated time,

it takes about 14 minutes of simulation on an Intel Core 2 Extreme 3.2 GHz

system with 8 GB of RAM. The oscillation has an average period of 36 sec-

onds which corresponds to what has been observed experimentally (Hale

et al., 2001; Raskin and de Boer, 1999). The period is also in close agreement

with the value from the previously reported computational model (Fange

and Elf, 2006). Consistent with the observations by Huang et al. (2003) and

Fange and Elf (2006), the period increased proportionally to the number of

MinD, while reduced proportionally to the amount of MinE in the model.

In addition, as observed in the MinDE localization studies in Escherichia

coli (Shih et al., 2002), the membrane-bound MinE.MinDmATP dimers appear

to be lagging behind MinDmATP molecules when they migrate from one

pole to the other. Taken together, our simulations closely reproduce the

results from both experimental and previous computational studies.

Here, we describe the steps that trigger the spontaneous oscillation.

Initially, all molecules are evenly distributed in the cytoplasm. Very small

number of MinDATP molecules begin to independently associate at ran-

dom locations on the membrane and rigorously recruit other MinDATP

molecules cooperatively. As shown in Figure 3.5, the recruitment gives

the appearance of growing patches on the membrane. Cytosolic MinE

molecules are attracted to these patches because of their high affinity

to MinDmATP and form MinE.MinDmATP dimers. Soon the patches loosely

cover the entire membrane because the rate of MinD recruitment is faster

than the rate of dissociation, even after almost all MinE are found in the

MinE.MinDmATP dimer form on the membrane. At random locations on the
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Table 3.1: Parameters of the simple MinDE model.

Parameter Value

k1 0.5 s−1

k2 0.0125 µms−1

k3 0.0149 µm3s−1

k4 0.0923 µm3s−1

k5 0.7 s−1

Dcytoplasm 2.5 µm2s−1

Dmembrane 0.01 µm2s−1

Cell volume 3.27 µm3

Cell radius 0.5 µm

Voxel radius 8 nm

Initial MinDATP molecules 2001

Initial MinDADP molecules 2001

Initial MinE molecules 1040

membrane, some MinDmATP patches are free from MinE inhibition because

of the limited cytosolic MinE molecules. In addition, these patches also

become more persistent at locations farther from the dissociating patches,

where they are less inhibited by the newly released MinE molecules and

where MinDATP can escape cooperative recruitment by MinDmATP in the

dissociating patches. Finally, patches (or polar zones) form alternately (i.e.,

oscillate) at the two poles of the cell because the poles are sufficiently far

from each other to avoid both the rapid inhibition by the released MinE

and the cooperative recruitment by MinDmATP. During the oscillation cycle,

the MinE.MinDmATP dimers appear to be lagging behind MinDmATP because

the released MinE molecules from the opposite pole find MinDmATP at the

rim of the polar zone first.

From the simulations, we observed several important features of the

MinDE system that support the periodic oscillations. When we increased

the nucleotide exchange rate of MinDADP to k1 = 1 s−1, the population of

MinDATP increased, resulting in more MinDmATP and longer polar zones.

Since there are more MinDmATP to be activated by MinE, the oscillation
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Figure 3.3: Simulated cytosolic molecules of the MinDE system.
MinDATP (purple), MinDADP (white) and MinE (red) are randomly dis-
tributed in the cytoplasm of Escherichia coli at initialization.

period also increased to about 63 s. Conversely, the duration of an oscilla-

tion cycle is reduced to approximately 20 s when the rate is decreased to

k1 = 0.3 s−1 because of the limited number of MinDATP copies available.

The reactive collision probability p for MinDATP to associate indepen-

dently to the lipid molecules on the membrane (k2 = 0.0125 µms−1, p =

0.274× 10−4) is about four orders of magnitude lower than to associate co-

operatively with another membrane-bound MinDmATP (k3 = 0.0149 µm3s−1, p =

0.16), even though the number of lipid molecules (~72000) is only about an

order of magnitude more than that of MinDmATP (~1400). This ensures that

MinDATP only binds to the membrane independently to nucleate bindings

of other MinDATP. When we increased k2 = 0.05 µms−1, MinDmATP were

found loosely distributed in the polar zone that extended beyond the mid-

cell because the enhanced nucleation rate allows MinDATP to successfully

bind almost anywhere on the membrane. Occasionally, there were no clear

definition of the polar zones, with MinDmATP and MinE.MinDmATP covering

the entire membrane. The oscillation period increased moderately to about

44 s. Reducing k2 = 0.0009 µms−1 shortened the period marginally to 33 s

and displayed erratic nucleation patterns, with the polar zones frequently

appearing and growing near the midcell. In addition, because of the de-

creased nucleation rate, cooperative membrane recruitments of MinDATP
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dominated further and rigorous membrane associations occurred at the

nucleation sites.

Figure 3.4: MinDE oscillations on the membrane of Escherichia coli.
MinDmATP monomers and MinE.MinDmATP dimers are shown in cyan and
green respectively. The MinDmATP monomers appear to lead the dimers in
the oscillation cycle which has an average period of 36 seconds.

When the rate of cooperative recruitment was increased to k3 = 0.034 µm3s−1,

the oscillation was not triggered because MinE cannot rapidly activate the
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rigorously recruited MinDmATP. Therefore, both MinDmATP and MinE.MinDmATP

were uniformly distributed on the membrane. Setting k3 = 0.024 µm3s−1

stimulated the oscillation but the polar zones were not clearly defined

and extended well over the midcell because of the larger population

of MinDmATP. The oscillation period also increased to approximately 50

s. Reducing k3 = 0.004 µm3s−1 also prevented the oscillation because

MinDATP cannot successfully bind to the membrane—MinE rapidly disso-

ciates them since their cooperative recruitment activity has been weakened.

However, setting k3 = 0.007 µm3s−1 started the oscillation with a reduced

period of about 30 s, while the polar zones were occasionally nucleated

near the midcell.

Reducing or increasing the MinE membrane recruitment rate k4 has

generally the opposite effect of k3. This is because the membrane associ-

ated MinE activates MinD ATPase function that dissociates MinD to the

cytoplasm. Increasing the rate to k4 = 0.4 µm3s−1 generated the oscil-

lation with a shortened period of about 30 s since more MinE.MinDmATP

are available to activate MinD. The polar zones were nucleated both near

the midcell and at the poles, resulting in their rapid growth in each cycle.

Conversely, setting k4 = 0.05 µm3s−1 produced polar zones that are not

clearly defined with an oscillation period of approximately 41 s. Both polar

zones frequently appeared simultaneously with one usually covering more

than one half of the cell long axis.

The MinE.MinDmATP dissociation rate k5 has almost the same properties

as k4 but with higher efficacy. When the rate was increased to k5 = 1.2 s−1,

the polar zones were shorter and cycled between the poles with a period

lasting approximately 12 s. The higher rate increases the population of free

MinE that can associate and activate other MinDmATP, thus reducing the

size of the polar zones and increasing the oscillation speed. On the other

hand when the rate was reduced to k5 = 0.5 s−1, the period increased

to about 54 s, while the polar zones were nucleated at the cell poles and

extended beyond the midcell.
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Figure 3.5: Initial patches of MinD (cyan) and MinE.MinDmATP (green)
forming on the membrane (gray).

The significantly slower diffusion coefficient of MinDmATP and MinE.MinDmATP

on the membrane prohibits the molecules from rapidly achieving uniform

concentration on the membrane. By increasing the diffusion coefficient

twofold to Dmembrane = 0.02 µm2s−1, the polar zones extended beyond

the midcell and were not clearly defined. The oscillation period was about

60 s. Increasing the coefficient further to Dmembrane = 0.05 µm2s−1 did

not produce the oscillation.

3.3 conclusions

In this chapter, we have successfully extended the E-Cell System to

model RD on surface and in volume spaces with dynamic localization of

molecules by implementing the Spatiocyte method. A unique feature of

our method is that it can account for the important implications of volume

exclusion by molecules while performing RD in both volume and surface

spaces (see Chapter 2 and Arjunan and Tomita, 2009b). The correctness of

our method and implementation is demonstrated by the accurate repro-

duction of the MinD and MinE oscillation behaviors in Escherichia coli, as

observed in both experimental and previous computational studies. We

modeled the MinDE system because the proteins display unique proper-

ties such as spatiotemporal localization patterns on the membrane and
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intercompartmental reactions. We have shown the impact of changing the

various reaction and diffusion parameters to the dynamic localization pat-

terns of the proteins. The results presented in this chapter have previously

been published in (Arjunan and Tomita, 2009a). A guide to model RD

systems with the implemented Spatiocyte method in the E-Cell System is

also available (Arjunan, 2009).

Recent experimental studies have shown that MinE forms an annular

structure around the membrane, called E-ring, which oscillates together

with the polar zone (Raskin and de Boer, 1997). The work in this chapter

can be further extended to model such localization patterns and elucidate

the mechanism of E-ring formation, which remains ambiguous. Therefore,

in Chapter 4, we propose a more detail model of the MinDE system that

incorporates the formation of E-ring. We also use Spatiocyte to verify the

model and uncover the mechanism of E-ring generation.
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In this chapter, using Spatiocyte we model the Escherichia coli MinDE

division site control system and investigate the mechanism of MinE ring

formation, which remains unclear (Lutkenhaus, 2007). The rod-shaped bac-

terium begins to divide when the tubulin-homolog FtsZ, polymerizes into

a constricting annular structure (Z-ring) on the inner membrane (Adams

and Errington, 2009; Lutkenhaus, 2007). To ensure equal distribution of

cell contents to the two progeny cells, the constriction site is restricted to

the middle of the cell long axis by two mechanisms: (i) nucleoid occlusion,

which allows the Z-ring to assemble only at the midcell and the cell poles,

locations that are devoid of the nucleoid mass (Woldringh et al., 1990, 1991;

Bernhardt and de Boer, 2005), and (ii) carefully orchestrated RD of the

minB operon encoded proteins, MinC, MinD, and MinE, in the cytoplasm

and inner membrane, which suppresses polar Z-rings to avoid the mini-

celling phenotype (Lutkenhaus, 2007; Vats et al., 2009). The phenotype

is characterized by the formation of chromosomeless minicells by polar

septation and elongated cells with multiple chromosomes.

In the absence of MinE, the ATPase MinD in the ATP form, MinDATP

binds peripherally around the entire membrane (Raskin and de Boer,

1999). MinE, however, induces the MinD ATPase activity on the mem-

brane, causing hydrolyzed MinDADP to be released into the cytoplasm

and membrane-associated MinDATP to localize into a polar zone that oscil-

lates between the poles with a period of approximately 1 minute (Hu and

Lutkenhaus, 2001). The FtsZ inhibitor, MinC piggybacks on the oscillating

MinDATP (Hu et al., 2003; Zhou and Lutkenhaus, 2004), ensuring that its

time-averaged concentration is lowest at the midcell for the Z-ring assem-

bly while sufficiently high at the poles to abrogate nascent FtsZ polymers

(Hu et al., 1999; Hu and Lutkenhaus, 1999).
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While the exact mechanism is not known, MinE also localizes annularly

to form the E-ring at the medial edge of the polar zone (Raskin and

de Boer, 1997). When the E-ring is disrupted, the polar zone extends over

the midcell and oscillates markedly slower, resulting in the minicelling

phenotype (Raskin and de Boer, 1997; Zhang et al., 1998; Shih et al., 2002).

In the absence of MinD, wild type MinE is always cytosolic. However,

based on the observations from recent studies we predict that the MinE

constituting the E-ring could be transiently attached to the membrane

without being directly tethered to membrane-bound MinD. Firstly, double-

label fluorescence microscopy experiments by Shih et al. (2002) clearly

indicate that there is a higher density of MinE in the wild type E-ring than

that of MinD at the rim of the polar zone, ruling out the possibility that

all membrane-recruited MinE subunits are MinD-bound. In addition, the

width of the observed E-ring, which appears to be several times the length

of a MinE dimer, is also unlikely to be the direct result of MinE dimers

binding to MinD subunits at the rim. Truncated MinE N-terminal domain

can autonomously bind to the membrane in the absence of MinD, and in

the full length MinE, the binding domain is thought to be exposed upon

membrane recruitment by MinD (Ma et al., 2003).

Even though many computational models of the MinDE system have

been proposed (Howard et al., 2001; Meinhardt and de Boer, 2001; Kruse,

2002; Howard and Rutenberg, 2003; Huang et al., 2003; Drew et al., 2005;

Kerr et al., 2006; Fange and Elf, 2006; Pavin et al., 2006; Tostevin and

Howard, 2006; Cytrynbaum and Marshall, 2007; Loose et al., 2008; Derr

et al., 2009; Borowski and Cytrynbaum, 2009), the possibility that MinE is

transiently attached to the membrane to form the dense E-ring has not been

investigated at single molecule resolution in three-dimensional (3D) space.

Here by accounting for the transient membrane attachment of MinE, we

modeled the MinDE system with Spatiocyte and successfully reproduced

the observed in vivo dynamic localization patterns. Our simulation results
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suggest that the transient membrane attachment of MinE leads to the

formation of E-ring.

4.1 modeling the e-ring

To formulate a model of the MinDE system that can reproduce the E-ring,

we looked at the properties of MinE. The domains at the two terminals of

MinE appear to have separate roles in the polar zone oscillations although

they have been found to interact with each other (Ramos et al., 2006).

Firstly, in the absence of the MinE C-terminal domain, E-ring fails to

appear (Raskin and de Boer, 1997). The C-terminal also contains the

homodimerization domain of MinE (King et al., 1999). Hence, effective

homodimerizations of MinE may play a significant role in E-ring, especially

since it is made up of dense MinE. Secondly, when E-rings fail to appear,

MinD polar zones extend beyond the midcell and take much longer to

cycle between the poles (Rowland et al., 2000), resulting in the minicelling

phenotype. This implies that the MinD ATPase activity is substantially

reduced (Huang et al., 2003) in the absence of E-ring as a consequence of

the disrupted MinE C-terminal domain. Strikingly, the MinD interaction

domain resides near the MinE N-terminal (Ma et al., 2003), which was

present. Therefore, because the polar zone still appeared, the ATPase

activation function in the MinE N-terminal domain is likely at a very low

basal level when the C-terminal domain is disrupted. Thirdly, the truncated

N-terminal domain, which forms a nascent helix (King et al., 1999), can

autonomously bind to the membrane in the absence of MinD (Ma et al.,

2003), and in the full length MinE, the binding domain is thought to be

exposed upon membrane recruitment by MinD (Ma et al., 2003). This

further supports our theory that MinE constituting the E-ring remained

transiently attached to the membrane independently after recruited by

MinD.
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We make two assumptions to account for the above MinE properties

in our model. First, since MinE cannot independently associate to the

membrane, the putative membrane binding domain near the MinE N-

terminal is only exposed upon binding with MinD on the membrane as

suggested by Ma et al. (2003). Second, we predict that MinE can only begin

to transiently attach to the membrane independently of MinD when it is in

the dimer form with the membrane binding domains at both N-terminals

exposed. This is analogous to MinD, which must be in the dimer form for

stable binding to the membrane (Zhou et al., 2005).

The series of reactions in the proposed model are as follows: (i) cytosolic

MinDATP independently binds to the membrane, but with a very low

affinity,

MinDATP
k1−→MinDm, (4.1)

where the superscript m denotes that the molecule is membrane bound;

(ii) MinDm cooperatively recruits cytosolic MinDATP,

MinDm + MinDATP
k2−→ 2MinDm; (4.2)

(iii) MinDm also recruits cytosolic MinE dimer (represented as MinEE) to

the membrane,

MinDm + MinEE
k3−→MinDEEm; (4.3)

(iv) in the complex MinDEEm, MinE stimulates MinD ATPase function,

triggering the release of MinD to the cytoplasm whereas MinEE remains

transiently bound to the membrane via its exposed N-terminal membrane

binding domains (Ma et al., 2003)

MinDEEm
k4−→MinDADP + MinEEm; (4.4)
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(v) the released MinDADP is phosphorylated in the cytoplasm,

MinDADP
k5−→MinDATP; (4.5)

(vi) the unbound MinE subunit in the MinDEEm complex can also asso-

ciate with other MinD on the membrane,

MinDm + MinDEEm
k6−→MinDEEDm; (4.6)

(vii) the MinDEEDm complex releases MinDADP to the cytoplasm upon

activation,

MinDEEDm
k7−→MinDADP + MinDEEm; (4.7)

and (viii) because of the transient nature of MinEEm membrane associa-

tion, it also dissociates to the cytoplasm

MinEEm
k8−→MinEE. (4.8)

Note that the first five reactions, (4.1)–(4.5), are similar to the well known

MinDE model by Huang et al. (2003). However, in reaction (4.4) of our

scheme, the MinE dimer is transiently attached to the membrane instead

of immediately becoming cytosolic after activating and releasing MinD.

Table 4.1 summarizes the simulation parameters and their sources. We

used the adapted NR method to execute reactions (4.4), (4.5), (4.7) and

(4.8) since they are diffusion-independent. The remaining reactions were

performed using the proposed method for diffusion-influenced reactions.

4.2 results

4.2.1 A wide range of model parameters reproduce MinDE oscillation dynamics

The stochastic simulation results of our wild type MinDE model are pre-

sented in Figure 4.1. The dynamic localization patterns of the oscillation
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Table 4.1: Parameters of the MinDE model to reproduce E-ring.

Parameter Value Source

k1 0.022 µms−1 Fitted

k2 0.03 µm3s−1 Fitted

k3 0.5 µm3s−1 Fitted

k4 1 s−1 Fitted

k5 5 s−1 (Meacci et al., 2006)

k6 5000 µm3s−1 Fitted

k7 1 s−1 Fitted

k8 0.83 s−1 Fitted

DMinDATP , DMinDADP 16 µm2s−1 (Meacci et al., 2006)

DMinEE 10 µm2s−1 (Meacci et al., 2006)

Dm 0.02 µm2s−1 Approximated

Cell volume 3.27 µm3 Approximated

Cell radius 0.5 µm Approximated

Cell length 4.5 µm Approximated

rv 10 nm Approximated

MinD# 2000 molecules (Shih et al., 2002)

MinE# 1400 molecules (Shih et al., 2002)

The parameter value is estimated experimentally if a reference is given
in the Source column. Dm represents the lateral diffusion coefficient
of MinDm, MinEEm, MinDEEm and MinDEEDm. The diffusion co-
efficient is reduced to account for membrane-bound polymerization-
depolymerization of MinD subunits (Shih et al., 2003) and the poten-
tial MinE self-oligomerization (Pichoff et al., 1995; Zhang et al., 1998),
since they are not explicitly represented in the model. The approximated
Escherichia coli cellular dimensions are within the typical range.

are in agreement with those observed in experiments (Raskin and de Boer,

1999; Shih et al., 2002). Moreover, dense MinEm can be seen clearly local-

izing annularly to form the E-ring at the edge of the polar zones (see also

Figure 4.1C). The average oscillation period for 20 cycles is 48± 6 s, which

is consistent with the experimentally measured average value by Shih

et al. (2002). The oscillation period can also be increased to be within the

range of 50 s to 120 s as experimentally determined by Meacci and Kruse

(2005) by reducing the MinE transient membrane dissociation rate, k8. For
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the model, 1 minute of simulated time takes approximately 4 minutes of

runtime on an Intel Core 2 Extreme 3.2 GHz system with 8 GB of RAM.

The parameters that we used for the model were obtained from experi-

mental data if available, otherwise they were either fitted or approximated

(see Table 4.1). Significantly, compared to the MinD nucleotide exchange

rate used in previous models (Huang et al., 2003; Kerr et al., 2006; Fange

and Elf, 2006), ours was increased by several folds to 5 s−1 to meet the

lower bound determined by Meacci et al. (2006). Furthermore, increasing

or reducing the fitted reaction rates simultaneously by twofold did not

substantially affect the oscillation patterns but changed the average os-

cillation periods to 24± 4 s and 116± 23 s respectively. It is also possible

to generate the oscillations and E-rings when the changes are larger than

twofold but each fitted reaction rate needed to be readjusted. The initial

positions of the molecules in the cytoplasm or on the membrane also

did not have an effect in establishing and sustaining the oscillations. In

addition, reducing the cell length from 4.5 µm to 3.5 µm or increasing

the length to 5.5 µm still maintained the dynamic localization patterns of

MinD and MinE with the average oscillation periods of 47± 6 s and 55± 8

s respectively. Taken together, a wide range of parameter values can be

used to reproduce the E-ring and MinDE oscillation dynamics with our

model.

4.2.2 Transient membrane attachment of MinE leads to the formation of E-ring

Figure 4.1C shows that the wild type localization patterns of MinE and

MinD from our simulations are consistent with the in vivo results obtained

by Shih et al. (2002). The simulated E-ring, nonetheless, is more dispersed

than its in vivo counterpart possibly because we did not consider MinE

oligomerization (Pichoff et al., 1995; Zhang et al., 1998) and/or MinD

polymerization (Shih et al., 2003), both of which can substantially reduce

the diffusion coefficient and sharply increase the subunit density at the
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localization site. In addition, a significant portion of the E-ring is composed

of MinE that is transiently attached to the membrane independent of MinD

(shown in cyan in Figure 4.1A and 4.1C). We conclude that our wild type

model can reproduce the E-ring similar to the observations in vivo.

To confirm that our model can also reproduce the mutant phenotypes

of Escherichia coli, we compared simulation results with in vivo dynamic

localization patterns of MinD and MinE when the C-terminal domain

of MinE is disrupted. As evident in Figure 4.2, our model accurately

reproduced the disappearance of E-ring and the diffusely extended MinD

polar zones observed by Rowland et al. (2000) when we reduced the MinD

ATPase activation rates k4 and k7 to 0.06 s−1. Additionally, the oscillation

also has a very long period of ≈ 10 minutes, which corresponds to what

has been observed experimentally (Rowland et al., 2000). Our results agree

with previous suggestions by Huang et al. (2003) and Derr et al. (2009)

that the reduction of the ATP hydrolysis rate can increase the period and

reduce the intensity of E-rings. In our model, however, the E-ring is no

longer visible because MinEm is dissociated much faster (k8) than its

effective recruitment rates (arising from k4 and k7). MinE was represented

as homodimers in the model although it likely existed as monomers in vivo

since the C-terminal domain, required for homodimerization, was removed

(Rowland et al., 2000). As a result, we readjusted the model to represent

MinE as monomers, which still reproduced the mutant phenotypes when

the hydrolysis rate was decreased (data not shown).

In both experiment (Shih et al., 2002) and in our simulations, the growing

polar zone appears to be blocked at midcell by the E-ring before shrinking

and subsequently growing again at the opposite pole. The polar zone

grows because of independent nucleation and cooperative recruitment of

MinDATP to the membrane. The shrinkage is the result of MinDm stimula-

tion by the MinE population from the cytoplasm that is recruited to the

membrane. Adding another reaction to the wild type model that allows

MinEm to bind and stimulate MinDm on the membrane did not apprecia-
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Figure 4.1: Comparison of MinDE polar zone and E-ring oscillations
in wild type cells to simulation. (A) Oscillations of MinDm (orange),
MinDEm (purple) and MinEm (cyan) with transient membrane attachment
of MinEm according to the proposed reactions (4.1)–(4.8) (see Table 2 for
model parameters). (B) Same color scheme as in (A) but employing the
adapted Huang et al. (2003) model (reactions (4.1)–(4.5)). In the Huang
et al. model, reaction (4.4) is altered such that MinE is directly released
to the cytoplasm together with MinD upon ATP hydrolysis instead of
transiently attaching to the membrane. The reaction rates were fitted to
reproduce the pole-to-pole oscillations (see text). MinE is represented as
monomers in the reactions for simplicity.
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Figure 4.1: Comparison of MinDE polar zone and E-ring oscillations
in wild type cells to simulation (cont.). (C) Comparison of wild type in
vivo localization patterns of MinD and MinE (Left Column) to simulation
(Right Column) according to our proposed model in (A). In the simulation
panels, the corresponding simulated microscopy image (Upper) and single
molecule visualization (Lower) are shown. In the bottom simulation panel,
the molecule color scheme is as in (A). (C) (Left Column) is adapted by
permission from Macmillan Publishers Ltd: The EMBO Journal (Shih et al.,
2002), © 2002.

bly alter the dynamic localization patterns (data not shown). Therefore

in vivo, the transiently attached MinEEm could also be associating with

MinDm directly on the membrane, bypassing the cytosolic phase.

To see if the E-ring is still generated as observed in vivo when MinE

is immediately released to the cytoplasm instead of being transiently at-

tached to the membrane upon ATP hydrolysis, we employed the adapted

Huang et al. (2003) model, comprising only reactions (4.1)–(4.5). MinE was

represented as monomers instead of dimers in the reactions to simplify

the model and as a result, the remaining three reactions (4.6)–(4.8) were

removed. In the adapted reaction (4.4), we replaced the product MinEm

with cytosolic MinE to exclude transient membrane attachments of MinE.

The reaction rates k1 (0.035 µms−1), k2 (0.04 µm3s−1), k3 (0.5 µm3s−1),

k4 (0.15 s−1) and k5 (5 s−1) were fitted to reproduce the pole-to-pole

oscillations. The resulting dynamic localization patterns of MinDE are

shown in Figure 4.1B. The results indicate that MinDEm localized an-

nularly at the edge of polar zones that cycled with an average period

of 71± 8 s. Because the simulated MinE was always found dimerized

with MinD on the membrane, the in vivo localization pattern of E-ring,

which is not co-localized with MinD as shown in Figure 4.1C (Shih et al.,

2002), was not reproduced. Hence, we conclude that MinE must be able to

transiently attach to the membrane independently once recruited by MinD

to reproduce the E-ring.
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Figure 4.2: Comparison of MinDE polar zone oscillations in mutant
cells to simulation. Comparison of in vivo dynamic localization patterns
of Gfp-MinD (Top Row) to simulation (Bottom Row) in a mutant strain
expressing MinE1−53, where the C-terminal region of MinE comprising
amino acids 54–88 was removed is shown. The mutant strain exhibits
the minicelling phenotype whereby some of the cells (shown here in the
Top Row) are elongated and comprise multiple chromosomes. For the
simulation, the color scheme and the proposed model of MinE transient
membrane association in Figure 4.1(A) were used but the MinD ATPase
activation rates k4 and k7 were reduced to 0.06 s−1. The length of the
simulated cell was increased to 8 µm, estimated from the mutant. The Top
Row is reproduced with permission from (Rowland et al., 2000) © 2000,
American Society for Microbiology.

4.2.3 Width of E-ring is proportional to MinD ATPase activation rate

The basic factors that establish and sustain in vivo MinDE oscillations

according to the Huang et al. model have previously been described Huang

et al. (2003). Here we examine the oscillation characteristics in terms of

the adapted reaction (4.4) and the three new reactions (4.6)–(4.8) that we

added to the model to generate the E-ring.

As shown in the previous section, the E-ring is formed as result of

the transient membrane association of MinEEm after MinD is dissociated

68



4.2 results

to the cytoplasm in reactions (4.4) and (4.7). Increasing the rates of ATP

hydrolysis, k4 and k7, widened the E-ring and decreased the oscillation

period. This is expected because more transiently membrane-associated

MinEEm are available to form the E-ring while MinD in the polar zones is

rapidly removed. Conversely, the oscillations become slower with thinner

and fainter E-rings while the polar zones elongated when the rates were

reduced. The fainter E-rings are consistent with the in vivo localization

patterns resulting from a point mutation to the MinE C-terminal domain

(MinED45A) conducted by Shih et al. (2002). Our results thus imply that

the mutation at the C-terminal domain may have impaired the MinD

activation function of MinE.

Increasing the rate of reaction (4.6) narrowed the E-ring by reducing

the subsequent production of transiently bound MinEEm dimers but

decreased the period. The oscillation is rapid because more MinDEEm

associates with MinDm that are eventually activated. In reaction (4.8),

increasing the rate MinEEm is dissociated to the cytoplasm also had a

similar effect in that it narrowed the E-ring and made the oscillation

faster. The burst in the cytosolic MinE population that are capable of

rapidly rebinding with MinDm contributes to the shortening of the period.

Reciprocally, E-rings widen with slower oscillations when the dissociation

rate is reduced. However, if the rate is too small the E-rings become

dispersed as a result of MinEEm lateral diffusion.

Overall, the population of MinDEEm, MinDEEDm and MinEEm are

inversely proportional to the rates k4, k7 and k8 respectively. The ratio

of the three rates with respect to each other also generally determines

the population ratio of the three different MinE species on the membrane.

For example, higher k4 and k7 than k8 will generate less MinDEEm and

MinDEEDm compared to MinEEm.
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4.3 discussion

In this chapter, we modeled the MinDE dynamics using Spatiocyte to

elucidate the mechanism of E-ring formation, which remains ambiguous.

Based on the high density of MinE in the E-ring that is not co-localized

with MinD at least half of that density (assuming each MinD subunit

recruited a MinE dimer at the E-ring) (Shih et al., 2002), and the ability of

the truncated N-terminal domain of MinE to bind autonomously to the

membrane (Ma et al., 2003), we predicted that the MinE constituting the

E-ring remains transiently bound to the membrane autonomously after

being recruited by MinD. To evaluate our prediction, we incorporated

transient membrane attachments of MinE (MinEm) in our MinDE model.

We reduced the complexity and parameters of the model by incorporat-

ing a small number of reactions that are necessary to reproduce the MinDE

dynamics observed in vivo. Consequently, the reaction and diffusion pa-

rameters are effective parameters that might represent multiple processes

such as oligomerization and polymerization, which are not explicitly rep-

resented. We have also made two assumptions in the model. First, as

suggested by Ma et al. (2003), we assume that the putative membrane

binding domain near the MinE N-terminal is only exposed upon binding

with MinD on the membrane. Second, we speculate that MinE must be in

a dimer form with both N-terminal membrane binding domains exposed

by MinD before it can transiently attach to the membrane independently

of MinD.

With the simplification and assumptions, our model reproduced the

MinDE oscillation dynamics and E-ring that are consistent with the obser-

vations in vivo. Using the Spatiocyte visualization method, we can directly

compare the in vivo co-localization patterns of doubly labeled MinD and

MinE (Shih et al., 2002) with simulation. Significantly, our results for the

first time show that the transient membrane attachment of MinE is nec-

essary to reproduce the E-ring as observed in vivo. As we predicted, a

significant portion of the simulated E-ring consisted of transiently mem-
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brane attached MinEm. The results also indicate that the width of E-ring

is proportional to the MinD ATPase activation rate and inversely propor-

tional to the membrane detachment rate of MinEm. Higher binding rates

of MinDEEm to MinDm also narrowed the E-ring. When the C-terminal

domain of MinE was removed, the model recovered the in vivo mutant

phenotypes, including the longer polar zones, the substantial delay in the

oscillation period and the loss of E-ring. Our results attribute the mutant

phenotypes to the reduction of MinD ATPase activation by MinE.

We suggest a possible scenario for the reduced ATPase activation rate.

In the mutant, MinE is mostly found in the form of monomers because the

domain responsible for dimerization near the C-terminal region has been

removed. Wild type MinE in the dimer form could activate two MinD

monomers concurrently and thus, it is more effective in activating multiple

MinD protomers at a localized site of an oligomer or a polymer on the

membrane. For example, at the leading edge of the polar zone where the

E-ring forms, it is crucial for MinE to dissociate MinD faster than it is

recruited to the membrane. Otherwise, it would not be possible to rapidly

shrink the polar zone as seen in the wild type cells. Therefore, when

the homodimerization of MinE1−53 is impaired, the effective ATPase

activation rate could be significantly reduced, resulting in the mutant

phenotypes.

Interestingly, MinE C-terminal point mutations of the residues Asp45

and Val49 to Ala in MinED45A/V49A also resulted in the minicelling pheno-

type (King et al., 2000; Shih et al., 2002) and the complete loss of E-rings

although MinED45A/V49A homodimerizes in vitro (Shih et al., 2002). The

mutated residues form a highly conserved tetrad at the center of the

MinE dimer interface King et al. (see Figure 4.3A and 2000). Even though

MinED45A/V49A might be in the dimer form in the cytoplasm and in vitro

conditions that are free of membrane and MinD (Shih et al., 2002), we

predict that the dimer could be destabilized and dissociated on the cell

membrane by its N-terminal interactions with dimeric or polymeric MinD
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because of the weakened mutated dimeric bonds. As shown in the sec-

ondary structure of the dimer in Figure 4.3B, the mutated tetrad is located

at the center of solvent exposed face of the alpha helices and might be es-

sential for the dimer stability when it associates with MinD. The proximity

A

B

to MinE1-30

to MinE1-30

EN ECMinDMinD EC EN MinD MinDEN EC EC ENMinDMinD MinD MinD

C MinED45A/V49AWild Type MinE(i) (i)

EN EC EC ENMinD
MinD

MinD MinD
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EN EC EC ENMinDMinD MinD MinD
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EN ECMinDMinD
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EN EC EC ENMinDMinD MinD MinD
EN EC EC EN

(iii)
(iv)

Mutant

MinDMinD EN EC EC EN

Figure 4.3: The MinED45A/A49A mutant dimer and molecular models
of MinE interactions. (A) Space-filling representation of C-terminal
MinE31−88 homodimeric structure showing the positions of Asp45 (ma-
genta) and Val49 (light green) residues that form a highly conserved tetrad
at the center. (B) The corresponding secondary structure of MinE31−88

homodimer as shown in (A). The magenta and light green patches on the
helices show the positions of Asp45 and Val49 respectively.
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Figure 4.3: The MinED45A/A49A mutant dimer and molecular models
of MinE interactions (cont.). (C) Molecular models of wild type MinE
and MinED45A/A49A interactions in the MinDE system. The models are
represented by MinD (lime green box) that could be a subunit of an
oligomer/polymer (gray box), MinE N-terminal (EN) and C-terminal (EC)
domains, inner membrane (light blue horizontal block), cytoplasm (white
space), membrane binding domain (thick dark blue line), dimerization
bond (thick black line), Asp45 (magenta box) and Val49 (light green box)
dimerization interfaces, dissociation reaction (black arrow) and transition
of reactions (red arrow). (Wild Type MinE)(i) Cytosolic MinE, mostly ex-
isting as dimers, is recruited to the membrane by MinD oligomers. The
membrane binding domain at the N-terminals of the dimer are exposed by
MinD upon recruitment. (ii) The MinE dimer cooperatively and strongly
activates MinD because both of its N-terminal domains are associated
with MinD. Once MinD is released to the cytoplasm, the dimer remains
transiently bound to the membrane via the membrane binding region
at both of its N-terminals. The transiently bound dimer could either dis-
sociate to the cyoplasm (iii) or associate with new MinD protomers (iv).
(v) MinE dimer weakly activates the ATPase function of MinD without
cooperativity when only one of its N-terminals is associated with MinD.
Once activated the dimer becomes cytosolic if the membrane binding
domain is only exposed at one of its N-terminals. Reactions (i), (ii), (iii),
(iv) and (v) are simplified by the reactions (4.3), (4.6), (4.7), (4.8) and (4.4),
respectively, in our model. (MinED45A/A49A Mutant)(i) In the cyoplasm,
MinED45A/A49A may exist as a homodimer or a monomer. The homodimer
(or two monomers) is recruited to the membrane by MinD oligomers
(or two monomers). The membrane-binding domain at the N-terminal
of MinED45A/A49A is also exposed with the help of MinD. (ii) The re-
cruited MinED45A/A49A dimer is destabilized on the membrane by MinD
and dissociates. (iii) The dissociated MinED45A/A49A monomer activates
its bound MinD monomer weakly since there is no cooperativity. Upon
activation, both MinD and MinED45A/A49A monomers are released into
the cytoplasm. MinED45A/A49A is not transiently bound to the membrane
because it must be in the dimer form with the membrane binding domain
of both monomers exposed to support transient binding. (iv and v) Dur-
ing the long interval to weakly activate MinD, cytosolic MinED45A/A49A

monomer associates with its membrane counterpart and dissociates it
to the cytoplasm. Reaction (i) and reactions (ii-v) are simplified by the
reactions (4.3) and (4.4), respectively, in our model.

73



4.3 discussion

of the tetrad to the N-terminal domains indicates that it could be subjected

to immediate stress as MinD is associated at both ends, which could be

further amplified when MinD forms higher-order complexes. Figure 4.3C

illustrates an example of MinDE interaction model with the destabilization

of MinED45A/V49A dimer by MinD. Additionally, a single point mutation

of Asp45 to Ala in MinED45A was capable of generating narrower E-rings,

which we could attribute to a less destabilized MinED45A dimer interface.

Parallel to the narrowing of the E-ring width when we decreased the

activation rates k4 and k7 in our simulation, some MinED45A that are able

to stay dimerized on the membrane could strongly activate MinD and

form the narrower E-rings.

Since a wide range of our model parameters was able to reproduce the

dynamic localization patterns of MinDE, the model could also approximate

more elaborate models comprising detailed reactions such as MinDE

oligomerization. In Figure 4.3C we illustrate two such detailed models

of wild type MinE and MinED45A/V49A mutant interactions in the MinDE

system. Recently, Derr et al. (2009) proposed a partial non-oscillating

polymerization model of the MinDE system that do not explicitly include

cooperative activation of MinD to reproduce E-rings. Because in the model

MinE is always found dimerized with MinD on the membrane, it cannot

recover E-rings that are much denser than MinD. It will be interesting to

see how polymerization of MinD affects the formation of E-ring when

transient membrane attachment of MinE is incorporated. Since stronger

ATPase activation would be required to fragmentize and depolymerize

annealing MinD polymers than freely diffusing MinD as the case in our

model, we predict denser E-ring would form at the rim of the polar zones

if we extend our model to include MinD polymerization.

By observing E-ring localization patterns in fluorescence microscopy

images, it is difficult to infer what causes such dynamic annular structure

formation. Based on the density of MinE in the E-ring that is much higher

than MinD at the rim of polar zones, we can predict that it could be caused
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by transient membrane attachment of MinE. As we showed in this work,

using Spatiocyte to create a model based on the known properties of MinE

and the previously reported wild type and mutant localization patterns

of the MinDE system, we can substantiate our prediction. Moreover, the

model also provided further mechanistic insights about the system, such

as the width of E-ring could be proportional to the rate of MinD activation.
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In the previous chapter, we successfully modeled and reproduced the

E-ring dynamics as observed in vivo. However, the MinDE model was

simplified and did not include MinD polymerizations on the membrane.

In this chapter, we extend the Spatiocyte method to model polymerization

of proteins.

In addition to the spatial regulation of division site selection by the

MinDE system, many other cellular processes are also regulated by pro-

tein polymers. In eukaryotic cells, cytoskeletal polymers comprising mi-

crotubules, actin and intermediate filaments participate in processes as

diverse as cytokinesis, directing chromosome segregation, establishing

and maintaining cell morphology, facilitating cell motility and intracel-

lular transport, and defining cell polarity (Moseley and Goode, 2006;

Herrmann et al., 2007; Verhey and Gaertig, 2007). Similar functions are

also performed by bacterial cytoskeletal polymers composed of Walker A

ATPases (Koonin, 1993), and homologs of tubulin, actin and intermediate

filament (Michie and Löwe, 2006; Shih and Rothfield, 2006; Graumann,

2007; Pogliano, 2008). Moreover, recent research shows that several key

signaling pathways in animal cells are also regulated by polymerizing

proteins (Schwarz-Romond et al., 2007; Harada et al., 2008). Almost all of

these polymers are dynamic, carrying out their functions through care-

fully orchestrated assembly, disassembly and redistribution of polymer

subunits. It is becoming increasingly evident that quantitative models of

polymerization are necessary to understand the collective dynamics of

subunits and interacting molecules (Haviv et al., 2006; Kozlowski et al.,

2007; Schek et al., 2007; Surovtsev et al., 2008; Loose et al., 2008). Poly-

merization models are also used to estimate subunit binding energy and

activation rates (Lan et al., 2008).
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Since a polymerization model essentially involves molecular interac-

tions, it should describe at the molecular scale the emergent properties of

protein polymers that support their cellular functions (Karsenti et al., 2006).

These properties include the ability of polymers to assemble cooperatively,

isodesmically or both. In an isodesmic polymer, the effective binding en-

ergy for each subunit is identical and constant, whereas in a cooperative

polymer, the energy is increased by lateral or allosteric interactions. Lat-

eral cooperative assemblies produce multistranded polymers in which one

or more laterally bound subunit concurrently strengthens two or more

longitudinally bound subunits. In allosteric cooperative assemblies, newly

bound subunits undergo conformational changes that increase their bind-

ing affinity for other subunits. The conformational changes may propagate

according to the classical Monod-Wyman-Changeux (MWC) (Monod et al.,

1965) or Koshland-Nemethy-Filmer (KNF) (Koshland et al., 1966) model,

or the recently proposed conformational spread (CS) Bray and Duke (2004)

model. A polymer elongates by recruiting subunits to one or both of its

ends, or in the case of subunit treadmilling (Wegner, 1976), one end of

the polymer recruits while the other dissociates them. At steady state,

a constant polymer length is maintained if the rates of recruitment and

dissociation are the same. When any bond between subunits is broken, the

polymer becomes fragmented. Distinct or fragmented polymers may also

anneal to form a contiguous polymer.

Polymer functions are also linked to its morphology and molecular

interactions in the 3D intracellular space. Protein filaments confined to

spherical or rod-shaped cell membranes are known to arrange into helical

(Shih et al., 2003), ring (Bi and Lutkenhaus, 1991) and line (Larsen et al.,

2007) structures. In the cytoplasm, subunits can assemble into tubules,

asters and stars (Mejillano et al., 2004; Haviv et al., 2006). Intracellular spa-

tial features that can influence polymer assembly and function include the

3D position of subunits and polymer nucleation sites (Lutkenhaus, 2007),

volume exclusion by polymer filaments (Haviv et al., 2006), molecular
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crowding (Popp et al., 2007; Wieczorek and Zielenkiewicz, 2008), intercom-

partmental interaction and subcellular localization of reacting molecules

(Lutkenhaus, 2007), and diffusion-influenced reactions of molecules that

are either small numbered or heterogeneously distributed (Shih et al., 2002;

Lutkenhaus, 2007). Diffusion and small numbers of reacting molecules

may also induce stochasticity (Rao et al., 2002; Bhalla, 2004; Wilkinson,

2009) in polymer assembly (VanBuren et al., 2002).

Although a variety of quantitative methods have been developed to

model protein polymerization dynamics (Haviv et al., 2006; Kozlowski

et al., 2007; Schek et al., 2007; Surovtsev et al., 2008; Loose et al., 2008;

Cytrynbaum and Marshall, 2007; Lan et al., 2008; Miraldi et al., 2008),

many of the properties above have been omitted primarily because of the

computational cost and complexity. In this chapter, we extend Spatiocyte

to model polymerization of proteins and show that it can incorporate

the above properties while still maintaining a reasonable computational

time. We focus on polymers that are constrained to surfaces such as the

cell membrane, although our method can be adapted to model cytosolic

polymerizations as well.

5.1 methods

To model polymerization of proteins we adopt several typical approxi-

mations in polymer models: (i) we assume that the modeled polymers

are immobile and have attained their low energy morphology on the

membrane; (ii) we focus on polymerizations that are free of explicit force

generation and are constrained to a surface compartment; (iii) for a frag-

menting polymer species, we assume that any longitudinal bond between

two protomers in the polymer can break with the same rate constant; (iv)

conversely for an annealing polymer species, protomers at the tip of two

polymers can associate to form one longer polymer with the same rate,
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regardless of the length of the original polymers; and (v) we assume that

the multistranded polymers form 2D sheets over a surface compartment

instead of 3D sheets.

In our polymerizing Spatiocyte method, a polymer is nucleated when

two free monomers come into contact and associate to form an immo-

bile dimer on the membrane. If at least one of the free monomers is

a diffusing species, the monomer association is performed using the

diffusion-influenced reaction approach described in Chapter 2, otherwise,

the adapted NR method is applied (see Chapter 2, Section 2.3). Each

monomer of the dimer, which is in contact with the other, still occupies its

respective voxel and is now immobile. The dimer now constitutes the two

nucleated protomers at the tips of the nascent polymer. With a given reac-

tion rate, the protomers can each recruit another monomer longitudinally

when they come into contact. As this procedure is performed repetitively,

the polymer elongates by the two opposite tips to form a single stranded

polymer. The polymer can be fragmented when two protomers of the poly-

mer is dissociated. The protomers at the tip can also dissociate and become

a free monomer with a given rate. All dissociation reactions are performed

using the adapted NR method. Two distinct polymers can anneal when

the protomers at their tips come into contact and associate. The association

reaction is executed using the adapted NR method because both protomers

are immobile and are in contact (see Chapter 2, Section 2.3). Thus, when a

protomer is in contact with another immobile protomer that is a reactant

pair, the reaction is arranged in the adapted NR method priority queue

for execution according to the reaction propensity. A polymer can also

become multistranded when the protomers recruit monomers laterally.

The overall geometry of a polymer is determined by the bends between

each of its protomers. To constrain the polymer to the surface of a sphere

or a cylinder, the typical shapes of cellular or nuclear membrane, we adopt

the procedure proposed by Andrews and Arkin (2007). The procedure

maps the relative turn (α) of a recruited protomer to the left or right of the
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recruiting protomer on a flat plane to the corresponding 3D yaw (φ), pitch

(θ) and roll (ψ) angles for either the cylindrical or spherical membrane

surface. It ensures that the two protomers are touching the curved surface

and are plane-parallel to the surface below the center of the protomers.

Yaw specifies the turn to the left or right of the recruiting protomer while

rotating tangent to the membrane surface, pitch indicates the rotation

angle up or down the recruiting protomer’s frame of reference, whereas

roll specifies the rotation around the polymer axis.

It is worth noting that the Andrews and Arkin procedure constrains

polymers to surfaces without molecular reaction or diffusion. Moreover,

the procedure was developed to constrain polymers in continuous space,

unlike in the Spatiocyte method where the space is discretized into HCP

lattice. As a result, we map the continuum 3D coordinates to the lipid

voxel nearest to the target coordinates and occupy it with the recruited

protomer. To prevent the accumulation of error when mapping subsequent

recruited protomers from continuum to discrete space, the method keeps

a copy of the initial continuum coordinates when the polymer is nucleated

and uses them as the reference coordinates for subsequent recruitments.

We have also added connective protomers to ensure that all protomers

within a polymer is contiguous because the continuous to discrete space

mapping may sometimes result in disjointed protomers.

5.2 results

5.2.1 Spatiocyte reproduces multistranded membrane-bound polymerizations

We evaluated Spatiocyte to nucleate a polymer on the membrane and

elongate it by longitudinal recruitment of protomers at both tips of the

polymer. The tip protomers correctly recruited both freely diffusing and

immobile monomers from the membrane or cytoplasm. The polymer
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B

A

Figure 5.1: Multistranded polymerization on a cylindrical membrane.
(A) Position of protomers in the HCP lattice. Lipid molecules are shown
in gray. Protomers at different states, represented by different molecule
species, are shown in different colors. Blue: tip protomer; pink: longitudi-
nally bound protomer; red and olive green: laterally and longitudinally
bound protomer; green: connective protomer. (B) Corresponding position
of protomers shown in (A) in continuous space. Brown and blue: laterally
and longitudinally bound protomer; light green: laterally bound protomer;
cyan: tip protomer.
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Figure 5.2: Polymer curvatures on a spherical membrane. The membrane
surface is shown in white while the protomers are indicated by the small
orange spheres. Position of protomers are shown in continuous space.
The parameters of polymerization curvature in terms of {α,φ, θ,ψ} are
{130, 0,−1/(2rv), 0} (A), {40, 0,−1.5/(2rv), 0} (B) and {0, 0,−1/(2rv), 0} (C).
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Figure 5.3: Polymer curvatures on a rod-shaped membrane. The
membrane surface is shown in white while the protomers are
indicated by the small orange spheres. Position of protomers
are shown in continuous space. The parameters of polymeriza-
tion curvature in terms of {α,β,φ, θ,ψ} are {0, 90, 0,−1/(2rv), 0} (A),
{0, 0, 0, 1/(2rv), 0} (B), {0, 80, 0.19/(2rv),−0.96/(2rv), 0.18/(2rv)} (C) and
{0, 46, 0.64/(2rv),−0.52/(2rv), 0.50/(2rv)} (D). Here, β is the absolute angle
of the polymer on the cylinder surface, relative to the cylinder axis.
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also became multistranded when protomers started recruiting protomers

laterally. Figure 5.1A shows the multistranded polymer modeled using

Spatiocyte, while Figure 5.1B shows the corresponding position of the

protomers in continuous space. Our method also correctly performed

dissociation reactions that caused the polymer to fragmentize and shorten.

Fragmented polymers also correctly annealed to form contiguous polymers

when their tip protomers associated.

5.2.2 Spatiocyte reproduces various polymer curvatures on the membrane

Figure 5.2 and 5.3 illustrate the various polymer curvatures on the spherical

and rod-shaped membranes respectively, as modeled by Spatiocyte. The

figures indicate the position of polymer in continuous space. Together,

these results show that Spatiocyte can accurately model membrane-bound

polymerization molecules with various geometries.

5.3 discussion

In this chapter, we have extended the Spatiocyte method to model membrane-

bound polymerization of molecules. Our aim is to introduce a simple ap-

proach to represent the typical forms of membrane-bound polymerization.

The method models polymerization by making several approximations as

indicated in Section 5. Our results show that various polymer geometries

on the membrane can be modeled by Spatiocyte. An advantage of the

method is that the rate of protomer reaction or dissociation is dependent

on its position, as it is the case in vivo and in vitro. For example, the frag-

mentation rate in the middle of the polymer is lower than the dissociation

of the tip protomer, even if all protomers have the same dissociation con-

stant. This is because dissociated protomers at the middle of the polymer

have a higher chance of rebinding due to their proximity. Therefore, we

84



5.3 discussion

do not need to create reactions as a function of the polymer length as it is

done by other polymerization approaches (Lan et al., 2008). The method

can in future be used to model the polymerization dynamics of MinD,

which forms a helical structure on the Escherichia coli membrane during

the polar zone oscillations.
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In this work, we developed a new lattice-based Monte Carlo method

called Spatiocyte that can perform RD in and between volume and surface

compartments at single molecule resolution. Stochasticity in RD and the

excluded volume effect brought by intracellular molecular crowding, both

of which can significantly affect RD and thus, cellular processes, are also

supported by Spatiocyte. To our knowledge, this is the first method that

supports multicompartmental RD, stochasticity and the implications of

molecular crowding simultaneously. We have verified the correctness of

Spatiocyte by comparing the simulation results of diffusion, irreversible

and reversible reactions with the outcomes from analytical and numeri-

cal solutions. Spatiocyte also reproduces the well known implications of

molecular crowding in volume and surface compartments. To reduce the

high computational cost associated with spatial modeling methods, it em-

ploys several optimization strategies. First, it can simultaneously simulate

HD species, usually found in high concentrations, at compartmental scale

and low copy species, often heterogeneously distributed, at molecular

scale. As a result, the diffusion of each molecule belonging to the highly

concentrated species, which would incur very high computational cost,

can be skipped. Second, to allow bigger jumps in the simulation time, reac-

tions involving HD species are executed in an event-driven manner. Third,

the simulation space is discretized into hexagonal close-packed lattice to

allow fast resolving of molecular collisions, thus supporting rapid RD

simulation in crowded compartments. The optimization of computations

in Spatiocyte proved to be very efficient since it only requires 4 minutes

for a desktop computer to simulate 1 minute of the MinDE system that

can reproduce the E-ring.
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We also devised a new visualization method that uses the temporal posi-

tional data of simulated molecules to simulate optical microscopy images

of fluorescent labeled proteins. This is done by displaying the trajectory

of simulated molecules averaged according to the camera exposure time

used in the microphotography process. With the method we were able

to directly compare our simulation results to the localization patterns of

MinD and MinE in Escherichia coli and make objective evaluations.

We implemented Spatiocyte using the E-Cell System, an advanced

open-source simulation platform to model and analyze both small- and

large-scale biochemical reaction networks. The driver algorithm of the

E-Cell System (version 3) supports concurrent executions of multiple

simulation algorithms, whose time steps are independently advanced

in continuous-time, discrete-time or discrete-event manner at varying

timescales. Simulation algorithms can be developed using C++ and incor-

porated into the system as plug in modules. By creating three basic types

of algorithm modules, comprising a discrete-event simulation stepper,

reaction and diffusion processes, we were able to successfully implement

Spatiocyte using the E-Cell System. The correctness of the implementation

was demonstrated by the accurate reproduction of the MinDE oscillation

behaviors in Escherichia coli, as observed in both experimental and previous

computational studies.

Using the Spatiocyte implementation we modeled the Escherichia coli

MinDE division site selection system and investigated the mechanism

of MinE ring formation. By observing the E-ring localization pattern in

fluorescence microscopy images, it is difficult to determine what causes

such dynamic annular formation. Based on the density of MinE in the E-

ring that is much higher than MinD at the rim of polar zones, we predicted

that it could be caused by transient membrane attachment of MinE after

being recruited to the membrane by MinD. As we showed in this work,

using Spatiocyte to create a model based on the known properties of MinE

and the previously reported wild type and mutant localization patterns of
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the MinDE system, we could substantiate our prediction. Moreover, the

model also provided further mechanistic insights about the system, such

as the width of E-ring could be proportional to the rate of MinD activation.

Recent experimental studies have shown that MinD forms helical poly-

mers on the membrane (Shih et al., 2003). We have extended Spatiocyte

to model such membrane-bound polymerization dynamics of molecules

although it has not been used to model the MinD polymerization dynam-

ics. In future, in addition to modeling the polymerization dynamics in the

MinDE system, Spatiocyte could also be used to elucidate the formation

of the division septum at the middle of Escherichia coli (Lutkenhaus, 2007;

Adams and Errington, 2009) since the process also involves multicompart-

mental RD and polymerizations. Importantly, the FtsZ protein forms a

complex polymer structure that constricts in the middle of the cell to pro-

duce the two daughter cells. To model the constriction however, Spatiocyte

needs to account for the force-generation by the FtsZ polymers. Other

cellular processes that are strongly dependent on the cell morphology,

multicompartmental interaction and dynamic localization of molecules,

such as cellular signaling (Rangamani and Iyengar, 2008) and bacterial

chemotaxis (Greenfield et al., 2009; Rao and Ordal, 2009), could also be

modeled in future using Spatiocyte. As the work in this thesis demon-

strates, such models may provide mechanistic insights that are difficult to

obtain experimentally.
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