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17.1 Introduction

Biological systems often display remarkable behaviors that are not easily anticipated or comprehended. 

One broad example is the ability of cellular systems to maintain phenotypic stability under vast and 

diverse conditions [1–4]. Also, cellular systems are in constant evolution involving numerous tightly 

controlled molecular interactions to achieve specific goals; metabolism to balance the cell systems’ 

energy requirement, immune response signalling for tackling invading pathogens etc. Therefore, the 

properties of cellular systems cannot be understood if we treat biological entities in isolation, rather 

we have to consider them as an integrated system. The reliance of only using traditional wet-bench bio-

logical techniques to study cellular behavior is therefore insufficient and the investigation of molecular 

interactions in detail is necessary in order to understand especially time-evolving biological properties, 

such as morphology, growth, metabolism, and disease progression.

It is easy to imagine that cellular systems are complex and that the many cellular processes occur 

at random. However, we now realise that cellular interactions are structurally organized and can be 

interpreted in physical terms. Recent studies have revealed that large-scale biological networks are orga-

nized in a scale-free manner and their construction consists high degree of modularity [5–7]. It has also 

been proposed that at the elementary level the network consist of the building blocks of life, the net-

work motifs, and these are connected into modular groups and the modular groups are hierarchically 

arranged [8–11]. The overall network structure of a complex system is thus built to ensure stability, or 

robustness to perturbations, and display emergent properties such as phenotypic oscillations that act as 

biological switches [4,12,13].
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17-2 Future Prospects in Metabolic Engineering

We can accept the notion that system dynamics and network construction have a close relationship. 

When we consider network to network communications, e.g., the interactions between intracellular sig-

nalling with transcriptional phenotype or protein expression with metabolic network behavior, we know 

that an understanding of all these interactions is vital in explaining the holistic behavior of cells. Moreover, 

cellular interactions are not static and are constantly evolving. In order to interpret network properties 

such as feedback control/regulation and oscillatory behavior, it is therefore important to temporally quan-

tify the relevant biological entities, such as gene expression or metabolite concentration. Only through the 

analysis of such time variant interactions phenotype can we understand the dynamic cellular behavior. As 

dynamic cellular phenotypes cannot be comprehended by visual inspection or simple statistical or linear 

approaches, the development of appropriate complex network theory is thus essential. 

Over the last few years, there has been active development of systemic methodologies to decipher 

dynamic cellular behavior. This phenomenon led to the creation of a new interdisciplinary field, called 

systems biology, inviting scientist across various fields to actively participate in joint research. Although 

interdisciplinary research involving biology has been in existence for a long time, in a rather ad hoc

manner, only in the last 5–6 years that we have witnessed a global consorted effort [14,15]. The goal of 

systems biology is to generate, integrate, and analyze biological data, both in time and space, (i) for the 

understanding of molecular circuit design in detail and (ii) to predict the response of cellular system to 

various extracellular and intracellular perturbations.

A typical cellular system consists of hundreds of thousands of molecular interactions and to consider 

them in entirety, though desirable, is an overwhelming and impossible task. Therefore, to reduce such 

complexity, it would be appropriate to modularize cellular systems into layers of biological interest, 

for example, modularizing pathways of gene regulation system, for the determination of gene to gene 

interaction, signal transduction cascades for the understanding of extracellular signal propagation into 

the nucleus, and metabolic pathways for calculating the redistribution of fluxes to a given concentration 

perturbation. Although this kind of modularization concept preceded well before systemic approaches 

were evaluated, the detailed molecular machinery that govern the interactions between biological 

components along each layer and between layers cannot be understood without the introduction of 

theoretical concepts. (Figure 17.1). 
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FIGURE 17.1 Schematic depicting the levels or layers of interactions found in biological system.
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System biology methods are based upon formalized theories, in most cases utilizing physico-chemical 

laws. They are intended to provide better insights into the underlying molecular circuitry that controls 

complex biological systems. Another advantage of systems biology is the possible reduction of time and 

cost associated with traditional biological research, as the ability to perform optimized experiments in 

silico becomes an increasing reality [16–18].

In the field of metabolic engineering, the desire has been to manipulate the cellular system so as to 

optimize or improve cellular properties leading to an increased industrial output, for example, opti-

mal production of ethanol for beer brewery. However, using simple intuition or linear approaches to 

manipulate the metabolic pathways involving the desired substance often leads to failure [19,20]. This is 

not surprising as we now know that the biological system consists of highly nonlinear regulatory prop-

erties and hence targeting just one step in a network may not yield a beneficial outcome [11]. It is thus 

inevitable to consider the complexity of cellular system in a systemic manner and this is only possible 

if we consider the use of mathematical and computational approaches to supplement the ongoing wet-

bench experimental research.

In this chapter, we briefly introduce the concept of metabolic systems engineering (Section 17.2). We 

mention some of the popularly used theoretical approaches and introduce our very own computational 

platform, the E-Cell systems (Section 17.3), which can be used for metabolic engineering studies. In 

Section 17.4 we perform simple theoretical examples to show the utility of dynamic analysis of metabolic 

networks. Also in Section 17.5, we provide some practical examples of dynamic models that could ben-

efit the metabolic engineering community. We end the chapter by mentioning some of the future trends 

and requirements for the field.

17.2 Metabolic Systems Engineering

Metabolic engineering is aimed at improving the biological properties of a cell, by the exploitation of its 

metabolic network design. In the past, selective breeding of better yielding strains were used for indus-

trial and medical gain, the production of penicillin by Penicillium chrysogenum is a good example. The 

process involved several iterations between selection of new strains and mutating them. As the success 

of this field started to expand, it attracted scientists from various disciplines; biochemists, chemical 

engineers, analytic chemists, microbiologists, and physiologists. This resulted in the development of 

better analytical methodologies such as, recombinant DNA technology, which introduces purposeful 

intermediary pathways or genetic changes that usually result in better yielding strains [21,22].

The concept of metabolic engineering can be broken down into steps. The initial step is the selection 

of appropriate metabolic pathways which involve the cellular substance that is desired to be increased, 

for example, glycolysis and related pathways for the production of alcohol. As mentioned in the intro-

ductory section, since it is daunting to evaluate pathways involving thousands of reactions, metabolic 

engineers usually modularized their interest into specific pathways or network constituting of manage-

able size, usually in tens of reactions. The next step is the identification of the most effective target within 

this framework that could be modified for improved specific transport, increased product formation, 

or optimized conversion of substrate. This then requires the development or utilization of methods 

and tools to achieve the intended result, for example reducing an inhibitor enzyme concentration by 

using PCR-based gene deletion strategy [23,24]. However, there often exists unknown or unexpected 

metabolic regulation that eventually does not lead to the required result or does not yield the intended 

production volume.

Schaaff et al. investigated the production rate of ethanol by overexpressing eight glycolytic and fer-

mentative pathway enzymes of Saccharomyces cerevisiae by placing their genes on multicopy vectors 

[20]. By doing so, they increased specific enzyme activities between 3.7 and 13.9-fold in logarithmically 

growing cultures. Surprisingly, at that time, the increases in the activities of the different glycolytic 

enzymes did not affect the rate of ethanol production significantly as compared with wild type. This 

experiment was perhaps one of the early experiments that demonstrated that living cells are robust 
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17-4 Future Prospects in Metabolic Engineering

to diverse perturbation. Metabolic engineering thus cannot just rely on recombinant DNA techniques 

alone for success, it also requires the effort from systems biology. Therefore, it is important to review this 

field as metabolic systems engineering. 

In metabolic systems engineering, we assess the prospects of utilizing computational models to fur-

ther refine and optimize the current metabolic engineering design. The aim is to initially develop a 

dynamic computational or in silico model that simulates metabolic fluxes, the amount of product that 

accumulates in a cell or efflux out of the cell, the strength of enzyme activities that participate in the 

system and their directions under various perturbation conditions, using existing knowledge of the 

metabolic system of interest, including linear and nonlinear regulatory features. Basically, the initial 

model (with system parameters) is built based on what we know currently about the system. The next 

step is to perform computational analysis to determine the optimal target reaction (Figure 17.2). We can 

perturb the model (e.g. in silico enzymatic inhibition) at multiple steps or specific known key regula-

tory steps and by the analysis of the simulation result, we determine the combination of perturbation 

that yields the most beneficial in silico result. We then perform genetic changes to verify whether the 
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FIGURE 17.2 In silico analysis and optimization of metabolic networks for better product yield. Although a 

metabolic system consists of an entire cell or organism, some degree of isolation is necessary in order to analyze 

it. Step 1: Model Abstraction. This involves selecting pathways of manageable size in which the component(s) that 

exert strongest control over metabolic flux is(are) present. Step 2: Model Construction. Computational model 

(reference model) of the selected pathways is developed based upon existing knowledge, and system parameters 

are usually chosen to match experimental results of control (e.g., wild type). Step 3: Model Optimization. The 

reference model is first perturbed (e.g., mutation) at selected locations (single or multiple) using intuition for opti-

mal production of required substance(s) in silico. The model simulation is iterated until a satisfactory intended in 

silico outcome is obtained. Step 4: Experimental Testing. The simulation result is used to design new experiments 

that would produce the intended result. Usually, there will be a need to fine tune the computational model with 

wet-bench experiments (Step 5). Step 5: Model Iteration. The in silico models are tuned until satisfactory experi-

mental system behavior, due to perturbations, is obtained. This is a cyclic process. Step 6: Industrial Production. 

Once desired optimized result is obtained, the experiments are scaled up for industrial volume output. (From 

Selvarajoo, K., FEBS Lett. 580, 1457, 2006. With permission.)
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desired outcome is actually produced. In many cases the model simulations may not look satisfactory to 

the experimental findings, as we may not yet know other key regulatory features of the system. In such 

cases, we have to perform iterative work between in silico prediction and experimental findings (model 

refinement), before a desired outcome is achieved [25] (Figure 17.2). 

In the following section, we introduce some of the theoretical methods popularly used to model 

metabolic systems.

17.2.1 In Silico Methods

There are a number of computational and mathematical approaches popularly used to model metabolic 

network behavior. These include kinetic methodologies such as enzyme kinetics [26] and metabolic control 

analysis (MCA) [27], stoichiometric approaches, such as metabolic flux analysis (MFA) [28] and flux bal-

ance analysis (FBA) [29], and power law formalism such as the biochemical systems theory (BST) [30].

In kinetic methodologies, mathematical models of metabolic networks are created with the aid 

of detailed enzyme kinetic equations. The successful simulation of such models requires the system 

parameters (usually rate constants) to be known a priori. For example, to create a metabolic network 

model, ordinary differential equations (usually composed of Michaelis–Menten type equations) are set 

up to describe the fluxes for each metabolite. These are then integrated to obtain the metabolite con-

centrations over time. As most metabolic reactions are complex involving cofactors or other substrate 

regulation, the resultant ordinary differential equations are usually complex and not solvable using 

analytic approaches. Often numerical schemes are introduced to overcome this difficulty [31]. The main 

problem with kinetic methodologies, however, is the determination of the system parameters which are 

highly limited. Therefore, simplifying assumptions are generally used to make model simulation [32]. 

This often results in poor prediction of cellular response and requires improvement by iterative work 

involving experimental work (Figure 17.2). Kinetic methodologies are often used to determine key regu-

latory steps of metabolic pathways.

In MCA, the philosophy of modelling metabolic reactions is different. It is not intended to be used to 

discover a single rate limiting or key regulatory step. Rather, its use focuses on discovering the collec-

tive control of a series of interconnected reactions. Hence, it introduces the concept of control, that is, a 

measure to determine the effect one reaction has on all the interconnected metabolic pathway reactions. 

It thus defines and incorporates terms like flux and flux control in traditional enzyme kinetics. Instead 

of assuming the existence of a unique rate-limiting step, it assumes that there is a definite amount of 

flux control and that this is spread quantitatively among the component enzymes [27]. That is, MCA 

proposes the idea that the regulation of a cell requires the coordinated activity changes of multiples 

enzymes by analyzing how the control of fluxes and intermediate concentrations in a metabolic pathway 

is distributed among the different enzymes that constitute the pathway. The applications of MCA have 

resulted in notable successes in metabolic engineering usually involving detailed flux calculations with 

rationalized strain improvements [22].

Stoichiometric methodologies such as MFA and FBA are used when detailed kinetic information 

of metabolic interactions are not available. These models are therefore, not usually of a kinetic nature, 

rather they rely upon mass-action constraints to mathematically represent the direction for metabolic 

modulation. Therefore, they are mostly suited for steady-state analysis of a biological system under a 

given perturbation. In FBA, metabolic fluxes are represented using stochiometry and assembled into 

matrices. This usually results in a greater number of metabolic fluxes than the number of mass balances, 

implying a plurality of feasible flux distributions. Objective functions in metabolic essence, for exx-

ample optimal growth rate, are introduced and chosen to explore the best use of the metabolic network 

within a given metabolic genotype [33].

In genetic perturbations studies, such as knockouts or overexpressions, flux profiles are deter-

mined by the use of an optimizing function, the minimization of metabolic adjustment (MOMA) [34]. 

Stephanopoulos’s group used MOMA as an additional constraint to study heterologous expression of 

© 2010 by Taylor & Francis Group, LLC



17-6 Future Prospects in Metabolic Engineering

lycogene in E. coli using stoichiometric modelling [22,35]. They performed both single and multiple in 

silico gene knockouts to optimize the production of lycopene. Their simulation trends were subsequently 

verified through experiments [36].

Another theoretical method that has been used widely in modelling biochemical network but has not 

gained much popularity within the metabolic engineering community is the BST. BST is the original 

work of Savageau [37] and is aimed at addressing the characterization of integrated biological systems 

that cannot be represented to a large extent by linear systems. BST, hence, is a mathematical representa-

tion of nonlinear biological systems. The main essence is to consider reaction rates by general power-law 

expressions:

dX

dt
Xi

i

j

n m

i j

h

j

n m

ijX j

g
ij

1 1

(17.1)

where X1, …, Xn are dependent variables (dynamic concentrations of internal metabolites), Xn 1, …, 

Xn m are external variables (fixed concentrations of external metabolites), gij, hij are kinetic orders, 

which may be noninteger and nonpositive, and i, i are rate constants. In logarithmic coordinates, 

Equation 17.1 can be interpreted as a linearization of nonlinear kinetics, and as such BST claims to be 

a better approximation of reaction kinetics than linear expressions. BST suggests that all reactions that 

generate a metabolite Xj are combined into a single reaction with net vi, and all reactions that consume 

the same metabolite similarly are combined into another reaction with net rate v i. The rate of each of 

these combined reactions is approximated by power-law expressions and from mass balances around 

all the metabolites, a system of differential equations can be written that can be studied in detail for its 

control characteristics [30].

17.2.2 Stochastic Spatiotemporal Dynamics 

The methodologies discussed so far are only concerned with static or temporal molecular concentration 

variations, neglecting the fact that molecular concentration can also vary in space. In vivo systems often 

consist of well defined intracellular compartments such as mitochondrion, nucleus, and golgi apparatus. 

Intracellular molecules can be localized within these cellular structures through membrane anchoring 

or sequestration. Glucokinase, for example, is sequestered with glucokinase regulatory protein and pre-

dominantly remains in the nucleus of hepatocytes prior to glucose intake [38].

In addition, the molecular accessibility and mobility at different regions of the cellular environment 

is subjected to cytosol viscosity, dynamic subcellular structure and intracellular molecular crowding 

[39,40]. Such heterogeneity in temporal molecular distribution can highly influence the reaction kinet-

ics of interacting molecules. In saponin-skinned cardiac fibres studies, for example, the Km value for 

ADP to ATP conversion in situ mitochondria was found to be an order of magnitude higher than in iso-

lated mitochondria because of in vivo diffusion limited reactions [41]. As such, to accurately determine 

the reaction kinetics of the molecular species that is known to participate with several intracellular 

compartments, spatial consideration to metabolic reaction modelling is an important future direction.

The observation that certain biological networks are inherently stochastic by nature has lead to the 

discovery of selective phenotypic switching behavior of cellular systems [42]. Stochastic effects are usu-

ally observed when molecules are present in low-copy numbers, for example mRNA levels. This condi-

tion is usually not true for many metabolic systems and hence this approach has often been neglected. 

However, we know that certain metabolites or enzymes within a metabolic framework can be in low 

concentrations, for example 1,3-BPG in glycolysis [43]. It will be interesting to observe in silico how such 

specific low concentration spots could affect the propagation of downstream metabolism if we consider 

stochasticity aspects.
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There are several simulation approaches that consider both stochastic and spatiotemporal aspects for 

cellular systems. Takahashi et al. and Lemerle et al. provide comprehensive up-to-date reviews on these 

approaches [44,45]. More recently, Tolle and Le Novere argued that among the many approaches, par-

ticle based simulation with individual molecule resolution can best reproduce in vivo phenomena such 

as substrate channelling and colocalization of molecules [46,47]. 

In Section 17.3, we introduce the concept of space and noise in metabolic networks through theoreti-

cal examples using our newly developed particle based simulation approach with single molecule reso-

lution [48]. We demonstrate that the simultaneous coupling of space and noise can significantly alter the 

phenotypic outcomes of metabolic pathways.

17.3  Simulation Tools: E-Cell for Metabolic  
Systems Engineering

As systems biology approaches become increasingly appreciated and adopted, there is a need for the 

development of systemic tools to perform theoretical analysis of biological processes. As most math-

ematical models developed to represent biological processes involve large number of reactions or inter-

actions often involving highly nonlinear equations with multiple parameters, it daunting to solve them 

without proper computational tools. Furthermore, these computational tools must be available in a form 

appreciated by biologists, whom are usually not well versed in detailed programming, with ease of use 

and analysis. For example, model construction, parameter selection or estimation, simulation results 

comparison with experimental findings, model modifications etc. should be done with ease without 

the requirement to possess programming skills or to know the detailed background architecture of the 

computational tools. In this light, there have been numerous efforts across the globe to develop user 

friendly computational simulation platforms. As of today, there are more than 90 such tools freely avail-

able (http://sbml.org/index.psp) and among the many, one of the earliest and pioneering computational 

tool developed is the E-Cell simulation platform [49].

The E-Cell simulation system was induced in 1995 at our institute with the aim to perform simulation 

and analysis of an organism’s entire metabolic reaction kinetics. This ongoing effort also incorporates 

several other methodologies, apart from reaction kinetics, such as MCA, FBA and S-systems, into one 

simulation platform (Table 17.1). As a consequence, the E-Cell system can be used to model several 

biological processes albeit metabolic pathways modelling, such as membrane transport, transcription, 

translation, DNA replication, signal transduction etc. [50].

We know that certain cellular process like metabolic reactions can be treated as deterministic pro-

cesses while others like gene regulation networks are usually considered stochastic events [51,52]. Using 

modern simulation tools, like E-Cell, we can selectively use deterministic approaches to model protein 

interactions at the receptor and cytoplasm and stochastic processes in the nucleus for gene expression 

output for a more accurate representation of the entire signalling process.

The E-Cell platform also provides the user with freedom to combine and test various methodologies 

into one model simulation. For example, Nakayama et al. developed the hybrid dynamic and static 

simulation (HDSS) method to combine the simulation technique of kinetic with stoichiometric meth-

ods (Figure 17.3). They claim that such hybrid methods could optimize the benefits of both methods to 

yield faster and improved simulation results with lesser reliance on detailed kinetic parameters which 

are often difficult to obtain [53].

Apart from model creation and simulation, the E-Cell system also features intelligent built-in opti-

mization processes such as genetic algorithm and genetic programming for the determination of system 

parameter values (e.g., rate constants) and the selection of system mechanism type (e.g., type of enzyme 

regulation), respectively when dynamic experimental information (e.g., temporal metabolite concentra-

tion profiles) are available [54,55].

In the next section, using E-Cell, we show the development of simple models, to demonstrate the util-

ity of dynamic computational models that can be used to interpret biological network properties.
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TABLE 17.1 Core Features of E-Cell System

Type of Feature Description

Modelling capabilities Stochastic and deterministic events

Model types Enzyme kinetics

Metabolic control analysis

Flux balance analysis

Biochemical systems theory (S-systems)

Spatial simulation*

Hybrid dynamic/static simulation* 

Algorithms Gillespie-Gibson (stochastic)

Explicit/implicit Tau-leap (stochastic)

Langevin method (stochastic)

Radau5/Dormand-Prince adaptive

Dormand-Prince 4(5)7M explicit

Fehlberg 2(3) explicit

Euler explicit

Radau5 implicit

Model optimization schemes Genetic algorithm

Genetic programming*

Computing  

optimization schemes  

(parallel computing)

Distributed computing

User interface Real time user intervention and 

visualization

Python scripting for automation of 

simulation

Graphical Model Editing

Platform Linux and Microsoft Windows XP

Source code Object Oriented C /Python with GPL 

license

File types SBML and EML

*Under implementation.

Cytoplasm

Nucleus

A

B
C

D

E

F
G

H

I
J

K

Thick lines – kinetic analysis (cytoplasm)

Thin lines – flux balance analysis (nucleus)

FIGURE 17.3 Combining multiple simulation algorithms is the idea behind hybrid dynamic/static simulation 

(HDSS) process. Metabolic fluxes between A to K can be simulated using two methods, kinetic reaction analysis 

for metabolites A to G and stoichiometric flux determination for metabolites G to K. This method calculates the 

metabolic fluxes for all reactions without the necessity to obtain all kinetic parameters. (From Yugi, K., Nakayama, 

Y., Kinoshita, A., and Tomita, M., Theor. Biol. Med. Model., 2, 42, 2005. With permission.)
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17.4 Dynamic in Silico Simulation

17.4.1 Theoretical Illustration

In this section, we introduce basic ideas to illustrate the usefulness of studying dynamic models to 

understand regulatory behavior of biological networks. The intention is to show how analyzing system 

dynamics may change the way we view or understand biological phenotype. For example, how do we 

understand feedback regulation controlling the flux distribution of a metabolic system? To illustrate, let 

us consider a simple theoretical metabolic pathway system, consisting of five metabolites, with a nega-

tive feedback mechanism. Figure 17.4a shows that increasing concentration of metabolite D negatively 

controls the flux through metabolite C.

(c)

A

(a)

(b)

B C D E

–

FIGURE 17.4 (See color insert following page 13-20.) (a) A simple schematic of negative feedback system in meta-

bolic pathways. (b) The temporal simulation profile of metabolite concentrations of a hypothetical system as depicted 

in Figure 17.4 and Table 17.2a. (c) The temporal simulation profile of metabolite concentrations of a hypothetical sys-

tem as depicted in Figure 17.4 and Table 17.2b (without negative feedback mechanism). In (b) and (c) all metabolites 

are initially at steady-state levels and at t 0 s, the concentration of A is increased instantaneously (perturbed) by 266 

molecules or 0.44 mM. The x-axis represents time in seconds and the y-axis represents the number of metabolites. 

(Using an assumed volume of 1e–18 l, we could covert the y-axis to metabolite concentration, if necessary.) All simu-

lations were carried out using the E-Cell system version 3.
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We performed two types of simulations with this system, one in which the feedback regulation is 

“switched on” and the other with the feedback regulation “switched off”. Table 17.2 shows the simula-

tion details such as kinetic formula, parameter values and end simulation result for the various metabo-

lites shown in Figure 17.4a. (The actual theoretical models can be downloaded from http://e-cell.org/

community/models.). When we compare the simulations between the two cases, we notice that tran-

siently the flux through metabolite C to E is reduced due to the negative feedback mechanism. However, 

eventually at larger simulation time, the differences between the two cases for all metabolites ceases 

(Figure 17.4b and c). That is to say, the steady-state levels are similar in the presence or absence of 

negative feedback regulation in such a metabolic pathway. This simple analysis of metabolic phenotype 

suggests that steady-state condition alone is insufficient for the discovery of novel regulatory network 

features of metabolism. 

We next extend this illustration to include a slightly modified scenario that results in profound dif-

ference between the steady-state levels in the presence or absence of negative feedback mechanism. 

Figure 17.5a includes an additional reaction for metabolite B, which converts it to metabolite F. In this 

renewed scenario, the flux through metabolite C to E is noticeably reduced under negative feedback 

control (Figure 17.5b and c and Table 17.3). In silico dynamic models can, therefore, allow us to predict 

TABLE 17.2 Initial Concentration, Transient Concentration, Kinetic Reaction Formulae and the 

Parameter Values: (a) for Linear Pathway with Feedback Mechanism; (b) without Feedback Mechanism, 

as Depicted in Figure 17.4

Metabolite, S

S0 Steady-State 

Conc. (mM) S1 Kinetic Formulae Parameter Values (1/s)

S Trans. Conc. 

t 253 s (mM)

(a)

A 0.21 dE

dt
k E k D

1
5 1 4 1

k1 0.01 0.24

dA

dt
k A

1
1 1

B 0.21 dB

dt

k B

q D D
k A

o

1 2 1
1 1

1( )

k2 0.01, q 1 (1/mM) 0.52

C 0.46 dC

dt
k C

k B

q D Do

1
3 1

2 1

1( )

k3 0.0045 0.51

D 0.26 dD

dt
k D k C

1
4 1 3 1

k4 0.008 0.28

E 0.19 dE

dt
k E k D

1
5 1 4 1

k5 0.011 0.20

(b)

A 0.21 dA

dt
k A

1
1 1

k1 0.01 0.24

B 0.21 dB

dt
k B k A

1
2 1 1 1

k2 0.01 0.30

C 0.46 dC

dt
k C k B

1
3 1 2 1

k3 0.0045 0.65

D 0.26 dD

dt
k D k C

1
4 1 3 1

k4 0.008 0.33

E 0.19 k5 0.011 0.22

The model parameters, k values, were selected so that the metabolites reach designated (hypothetical) steady-state 

levels with a constant source of 0.0023 mM/s given to metabolite A. Once the steady-state levels were reached, we 

reset the simulation time to zero and pulse the metabolite A by 266 molecules. So, a typical metabolite, S, is 

represented by: S S dS dtdt0 0 1( ) ./
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metabolic network behavior under various types of conditions. Such models should be increasingly used 

as part of metabolic engineering design.

17.4.2 Stochastic Spatiotemporal Simulations 

The issue of biochemical movement within cells, especially intercompartmental exchanges, could be an 

important aspect of biological or metabolic regulation that is often left out due to lack of availability of 

experimental information or theoretical expertise. One such example is the translocation of pyruvate, 

in mammalian cells, from cytoplasm to mitochondrion.

(c)

A B C D E

–

F

(a)

(b)

FIGURE 17.5 (See color insert following page 13-20.) (a) Metabolite B having an additional reaction that con-

verts it to metabolite F. The temporal simulation profile of metabolite concentrations, (b) without and (c) with 

negative feedback mechanism, a hypothetical system depicted in Figure 17.6 and Table 17.3. Initially all metabo-

lites remain at steady-state condition and at t 0 s, the concentration of A is increased instantaneously (per-

turbed) by 266 molecules or 0.44 mM (volume of cell is assumed to be 1e–18 l). The x-axis represents time in 

seconds and the y-axis represents the number of metabolites. All simulations were carried out using the E-Cell 

system version 3.
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To demonstrate computationally how intercompartmental diffusion and localization of biochemical 

molecules can affect the overall reaction kinetics of a metabolic network, we developed two three-dimen-

sional in silico models of a single cell consisting of a few reactions. In the first model, the cell constitute of 

only a single compartment, the cytoplasm and all the metabolites are free to diffuse and react anywhere 

within this compartment (Figure 17.6a). When the metabolite A is pulse perturbed, the concentration of 

metabolites C and D reached steady state levels of 0.74 mM and 0.75 mM respectively, at around t 750 

s (Figure 17.6c). The details of the model are shown in Table 17.4. In the second model, we introduced 

another compartment, like the mitochondrion, and localized one of the reaction’s enzyme, E2, within 

this compartment (Figure 17.6b). This means that the enzyme E2 exclusively reside only in mitochon-

drion and cannot travel outside the compartment. Under this renewed situation, with metabolite A per-

turbed in the same way, the steady-state levels of C and D reached, 0.64 mM and 0.83 mM, respectively 

and the time to reach steady-state is t 1500 s (Figure 17.6d and e). These simulations reveal, even for a 

simple situation, considering spatial effects produce significant changes in the time to reach steady-state 

conditions. In addition, the steady-state levels for C and D also differ perceptibly. Theoretically, the delay 

and changes in the steady-state levels are caused by (i) the intercompartmental diffusion of metabolites 

TABLE 17.3 Initial Concentration, Final Concentration, Kinetic Reaction Formulae and the 

Parameter Values: (a) for Branching Pathway with Feedback Mechanism and (b) without the Feedback 

Mechanism, as Depicted in Figure 17.6

Metabo-lite, S

S0 Steady-State 

Conc. (mM) S1 Kinetic Formulae

Parameter  

Values (1/s)

S Quasi-Steady-State 

Conc. t 300 s (mM)

(a)

A 0.65 dA

dt
k A

1
1 1

k1 0.1 0.21

B 0.06 dB

dt

k B

q D D

k B k A

o

1 2 1

6 1 1 1

1( )

k2 0.7,

k6 0.06,

q 1 (1/mM)

0.06

C 0.26 dC

dt
k C

k B

q D Do

1
3 1

2 1

1( )

k3 0.05 0.26

D 0.14 dD

dt
k D k C

1
4 1 3 1

k4 0.06 0.14

E 0.11 dE

dt
k E k D

1
5 1 4 1

k5 0.0001 0.30

F 0.08 dF

dt
k B

1
6 1

0.32

(b)

A 0.65 dA

dt
k A

1
1 1

k1 0.1 0.21

B 0.06 dB

dt
k B k B k A

1
2 1 6 1 1 1

k2 0.7,

k6 0.06

0.06

C 0.26 dC

dt
k C k B

1
3 1 2 1

k3 0.05 0.26

D 0.14 dD

dt
k D k C

1
4 1 3 1

k4 0.06 0.14

E 0.11 dE

dt
k E k D

1
5 1 4 1

k5 0.0001 0.50

F 0.08 dF

dt
k B

1
6 1

0.12

A typical metabolite, S, is represented by: S S dS dtdt0 0 1( ) ./
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and due to the absence of enzyme E1 and E3 in the mitochondrion compartment and (ii) enzyme E2 

being located in the mitochondrion only; metabolite B, which diffuses through Brownian motion, is 

unable to be catabolized by E2 as frequently as it could under the noncompartmental situation.

Our example, even though minimal, demonstrates the utility of spatiotemporal effects when 

incorporated with in silico models representing multiple reactions across multiple intracellular com-

partments. (Similar results can also be shown for noncompartmental localization of molecules at 

different regions of the cell.) Though the present usage spatial simulation is limited due to the general 

lack of quantitative experimental data, the advent of fluorescence correlation spectroscopy, immuno-

electron microscopy and other related technologies may change the situation in the future [56,57].

A

(a)

E1

E3

E2

C

Cytoplasm

BD

(b)
A

E1

E3

E2

C

Cytoplasm

Mitochondrion

BD

(c) (d)

FIGURE 17.6 A schematic of four reactant metabolic pathway developed using spatial simulation algorithm 

compartments, cytoplasm, and mitochondrion. Reactions A to B to D takes place within the cytoplasm and reac-

tions B to C occurs in the mitochondrion. (c) The dynamic in silico simulations of the various reactants concentra-

tion in the cytoplasm for model represented in (a). (d) The dynamic in silico simulations of the various reactants 

concentration in the cytoplasm, (e) in the mitochondrion and (f) both combined (overall), obtained using model 

represented in (b). The x-axis represents time in seconds and the y-axis represents the number of metabolites. The 

volume of cell used is 2e–18 liter. All simulations were carried out in E-Cell system version 3.
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(e) (f)

FIGURE 17.6 (continued)

Box 17.1 Spatiotemporal 
Stochastic Simulation 
Algorithm

W
e developed a novel spatial simulation algorithm, which describes the three- 

dimensional cell space and components such as intracellular compartments, and per-

formed our simulations using Monte–Carlo technique [48]. The three-dimensional 

space, corresponding to the simulated cell volume, is discretized into a lattice of spheres arranged 

in hexagonal close-packing (Figure 17.B1). A molecule can occupy a single sphere in the lat-

tice and diffuse based on its diffusion probability to one of its 12 adjacent spheres in a time step 

(Figure 17.B2). The selection of a destination sphere out of the 12 adjacent spheres is performed 

randomly. After a large number of time steps, the diffusion of each molecule converges into a 

Brownian motion. The time step interval is determined from the diameter of the sphere, i.e., the 

molecule’s displacement in a time step. The diameter of sphere on the other hand, is determined 

from the diffusion coefficient of the fastest moving molecular species, such that the diffusion 

probability is unity in a time step. The diffusion probability of other slower species is computed 

from its diffusioncoefficient and the time step interval.

During diffusion, if the destination sphere is occupied by another molecule and the molecule is 

its reaction partner, both molecules can form a complex probabilistically based on their reaction 

rate (Figure 17.B3). If the molecule in the destination sphere is not a reaction partner, the molecule 

stays at its currently occupied sphere. On the other hand, if the molecule is a complex, it can also 

dissociate based on its dissociation probability into two separate molecules, with one occupying 

the currently occupied sphere and the other, occupying one of the free neighboring spheres that is 

randomly selected (Figure 17.B4).
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Box 17.1 (continued)

FIGURE 17.B1 FIGURE 17.B2

A + B

A
B

C

t = n t = n + ∆t

C

FIGURE 17.B3

A + B

A

B

C

t = n t = n + ∆t

C

FIGURE 17.B4

TABLE 17.4 Model Details for in Silico Cell with (a) One 

Compartment, Cytoplasm (b) with Two Compartments, 

Cytoplasm and Mitochondrion; (c) Represents the System 

Parameters and Reactions

(a) Cytoplasm Compartment (Total Vol.: 2.0e–18 l)

Metabolite/

Enzyme Initial Value (t 0 s) mM

Steady-State value 

(t 750 s) mM

A 1.49 0

B 0 0

C 0 0.74

D 0 0.75

E1 0.06 0.06

E2 0.03 0.03

E3 0.03 0.03
(continued)
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17.5 Practical Applications

17.5.1 Budding Yeast Metabolism

Metabolomics is an emerging science that aims at temporal quantification of metabolites in cellular sys-

tem [58]. Although the field still faces many challenges to produce accurate high-throughput metabolic 

profiling, there have been recent successes when considering smaller network quantification. For exam-

ple, Theobald et al. and Visser et al. have temporally quantified the primary energy metabolites and 

adenine nucleotides of Saccharomyces cerevisiae in pulse perturbed experiments [59,60]. The generation 

of such in vivo “snap shot” of metabolism is indispensable as it allows one to check in silico predictions 

over a period of time rather than just comparing at steady-state conditions.

In this section, we discuss an example of how dynamic models can be used to decipher key regula-

tory steps of metabolic pathways. Figure 17.7a through c, adapted from Theobald et al. shows a section 

of glycolytic phenotype of Saccharomyces cerevisiae [59]. By simple visual inspection or static analysis, 

we are unable to understand the mechanism underlying the dynamic changes in the glycolytic pheno-

type. For example, in Saccharomyces cerevisiae glycolysis we expect glucose pulse to be predominantly 

metabolized into pyruvate, lactate, ethanol, and glycerol (end products). However, this prediction using 

stoichiometry does not allow us to comprehend the results shown in Figure 17.7b and c. We would not 

expect, for instance, phosphoenol pyruvate (PEP) levels to reduce after glucose pulse experiments. Also, 

by using stoichiometry, we would expect glycerol levels to rise significantly for the amount of glucose 

pulse given (Figure 17.7a).

TABLE 17.4 Model Details for in Silico Cell with (a) One 

Compartment, Cytoplasm (b) with Two Compartments, Cytoplasm 

and Mitochondrion; (c) Represents the System Parameters and 

Reactions (Continued)

(b) Cytoplasm Compartment (Total Vol.: 1.85e–18 l)

Metabolite/Enzyme 

Initial Value (t 0 s) 

mM

Steady-State Value 

(t 1500 s) mM

A 1.34 0

B 0 0

C 0 0.33

D 0 0.42

E1 0.06 0.06

E2 0.03 0.03

E3 0 0

Mitochondrion compartment (Total Vol.: 1.5e–19 l)

A 0.15 0

B 0 0

C 0 0.31

D 0 0.41

E1 0 0

E2 0 0

E3 0.03 0.03

(c)

System Parameters (Reaction Probability) System Reactions

p1 0.004 A E1→B E1

p2 0.006 B E2→C E2

p3 0.006 B E3→D E3
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The certain answer to these misnomers is that we do not yet understand the glycolytic pathway regu-

lations well enough to use it for industrial optimization. There still exist novel regulatory features that 

require elucidation. The best way that we could approach the problem is to analyze the dynamic glyco-

lytic phenotype of the Saccharomyces cerevisiae using systemic in silico methods.

Recently, Selvarajoo and Tsuchiya analyzed the result shown in Figure 17.7 using a novel dynamic 

network analysis method [61]. They suggest an unassuming location of glycolysis, the reaction catalyzed 
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FIGURE 17.7 (a) The glycolytic pathway of Saccharomyces cerevisiae. (Adapted from Theobald, U. et al Biotechnol 

Bioeng., 55, 305, 1997. Reprinted with permission of John Wiley & Sons, Inc.) (b) The temporal changes in the 

levels of glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) (A), fructose 1,6-bisphosphate (FBP) (B), PEP 

(C), Glyceraldehyde phosphate (GAP)/3-phosphoglycerate (3PG) (D) from steady-state conditions after a glucose 

pulse perturbation. (c) The changes in the levels of glycerol from steady-state conditions after a glucose pulse per-

turbation. We represent GAP as G3P throughout the text. (a) and (b) have the same time scale.
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by aldolase, may have become saturated and thus causes the lower than expected production of glycerol. 

To verify this result, they performed an additional test using traditional mass-action kinetic analysis 

with pulse perturbation and obtained similar result (Figure 17.8). Although their prediction that aldo-

lase might be a novel key regulator of glycolysis has not been validated with subsequent wet experi-

ments, there is the hope that in silico models could be utilized to decipher previously undiscovered key 

regulatory steps which may turn up to benefit metabolic engineering field, such as targeting the sug-

gested novel steps for increased/decreased production of substances of interest/concern.

17.5.2 Innate Immune Signaling

In innate immunity, the Toll-like receptors (TLRs) play a central role in combating invading patho-

gens by the induction of proinflammatory chemokines and cytokines [62]. The activation of TLR 

receptors are self-limiting but in certain cases, aberration of the signalling mechanism leads to 
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FIGURE 17.8 Mass-action kinetics analysis for local network involving fructose-6-phosphate (F6P), fructose 1,6-

bisphosphate (FBP) and glycerol (GLY). A unit pulse perturbation is given to F6P. The aim was to determine the 

various rate constants of the model, by making a close fit to the experimental data, and then comparing their values 

to infer the presence or absence of any rate-limiting phenomenon. In order to fit the model to experimental data, the 

value of k2 has to be much larger than that of k4 and k5 (k2 0.05, k4 0.0004, k5 0.0002). This mathematically indi-

cates that the reaction aft of FBP causes bottleneck, which suggests that the enzyme responsible, aldolase, is a key 

regulatory enzyme for glucose pulse experiments. (Solid lines indicate simulation result and dotted points indicate 

experimental result obtained.) (From Selvarajoo, K. and Tsuchiya, M. Systematic determination of biological network 

topology: Non-integral connectivity method (NICM). Humana Press, Totowa, New Jersey, 449–471, 2007; Tolle, D. 

and Le Novère, N. Curr. Bioinform., 1, 315, 2006; Theobald, U., Mailinger, W., Baltes, M., Rizzi, M., and Reuss, M. 

Biotechnol. Bioeng., 55, 305, 1997. With permission.)
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inflammation which eventually results in chronic diseases such as asthma, rheumatoid arthritis, 

multiple sclerosis etc. Although understanding proinflammatory signalling is key in resolving 

inflammation, there is little known about the regulatory role of the various intracellular signalling 

molecules. One example is I B kinase (IKK) α. Recently, Lawrence et al. implicated that IKKα lim-

its the activation of NF- B in macrophages and therefore could be one of the candidate target for 

downregulating inflammation [63]. 

Lawrence et al. performed various time-course experiments. Although they report very interesting 

and fascinating results, they did not perform systemic analysis that may have potentially influenced their 

final conclusion. For example they relatively quantified mRNA levels of several chemokines and cytok-

ines at various time points for both wild type and IKKα mutant macrophages under lipopolysaccharide 

(LPS) stimlus (Figure 4a of Ref. [63]). Many of the mRNA levels show distinct features. For example, 

Bfl-1, A20, GADD45β have similar response profiles while KC and MIP-2 have similar response profiles. 

By grouping similar mRNA response profiles together and using systemic approaches, we could possibly 

determine the connectivity of genes, or gene networks which may eventually help in the better under-

standing of signalling network [64].

To understand TLR4 signaling mechanism in a more systemic manner we developed a computa-

tional model of TLR4 signaling pathway using a deterministic approach [65,66]. The in silico model 

was designed to simulate, for both wild type and myeloid differentiation primary-response protein 

88 (MyD88) knockout macrophages, the expression of all known protein interactions in the cyto-

plasm and the mRNA levels of two genes encoding the proteins, IP-10 and TNF-α [65]. We proposed, 

through our systemic model, that the kink observed for the temporal phenotype of TNF-α mRNA in 

the IKKα wildtype may not be an experimental artefact, but rather it displays the behavior of the TLR4 

signaling network; the kink is a consequence of superposition of two signals, one coming from the 

MyD88-dependent pathway and the other delayed signalling from the MyD88-independent pathway 

(Figure 17.9).

We subsequently also performed an in silico IKKα mutant simulation which resulted in increased 

mRNA expression of TNF-α in accordance with experimental findings (data not shown). However, in 

contrast to the concept that IKKα is a negative regulator of NF- B, we observed IKKα mutant causes a 

bottleneck at the signaling upstream of IKK complex thus resulting in more flux through the alternative 

pathway of JNK and p38 which then results in increased expression of TNF-α. Although this predic-

tion is preliminary and requires further investigations, this alternative explanation to the role of IKKα 

brings us to consider systemic approaches that could elucidate nonintuitive behavior of biological net-

works. The resultant in silico hypothesis should then be complemented with wet-bench reality.

17.6 Future Prospects

Although metabolic engineering field is constantly advancing with the introduction of modern com-

binatorial tools that explores cellular behavior, the quantitative optimization of biochemical products 

has yet to take huge strides forward. This is partly due to the fact that our knowledge of biological net-

work behavior is still very limited. One way to overcome this difficulty is to use the knowledge gained 

from studying network architectures found in nonbiological fields and apply such insights to biological 

interactions. Barabasi et al. studied the “wiring” of world-wide-web and social networks and found 

that complex networks are often designed in a scale-free manner [5,6]. The protein interaction network 

of Saccharomyces cerevisiae was later shown to possess similar characteristics [67]. Such observations, 

which suggests that certain (dominant) elements in a network are much more highly connected than 

others, could pave way for the discovery of key “hubs” of biological (or metabolic) network. The “hubs” 

could then be targeted, say, by drugs for eliminating key disease progression. Therefore, uncovering the 

design principle of biological network construction is very important.

Another challenge lies with wet-bench research. Even though today, we are presented with a deluge 

of biological information gathered from high throughput experimental sources such as microarray and 
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mass spectrometry, the raw data generated are usually not in a form that could easily be used for in silico

model analysis. Often there are issues to remove experimental artefact such as noise (especially, for low 

concentration species) and accurate deconvolution of spectra peaks (mass spectrometry). In addition, 

the reproducibility of high throughput data is also a major challenge. Nevertheless, the quantitation of 

metabolic phenotype is gradually improving. The slow but steady progress of systems biology will even-

tually result not only in the advancement of metabolic engineering but also revolutionize the industrial 

bioprocess output.
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FIGURE 17.9 Schematic of TLR4 signaling pathways. Upon LPS binding to TLR4, NF- B is activated through 

two pathways, the MyD88-dependent and MyD88-independent pathways. The MyD88-dependent pathway consist 

of MyD88, IRAK1 and 4, TRAF6, TAB/TAK and IKK complexes. The MyD88-independent pathway is less under-

stood, hence, at this stage that TRIF activates NF- B is the only universally accepted mechanism. (From Miggin, 

S.M. and O’Neill, L.A., J. Leukoc. Biol., 80, 226, 2006. With permission.)
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