Firefly Luciferin

Down the Rabbit Hole of Quirality (no Quantum Madness today...)

Pathway inside Photinus pyralis

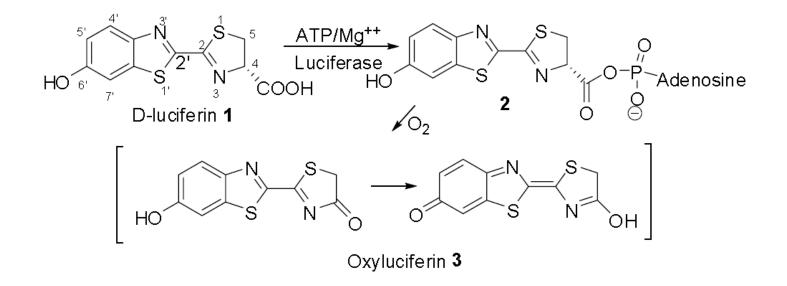
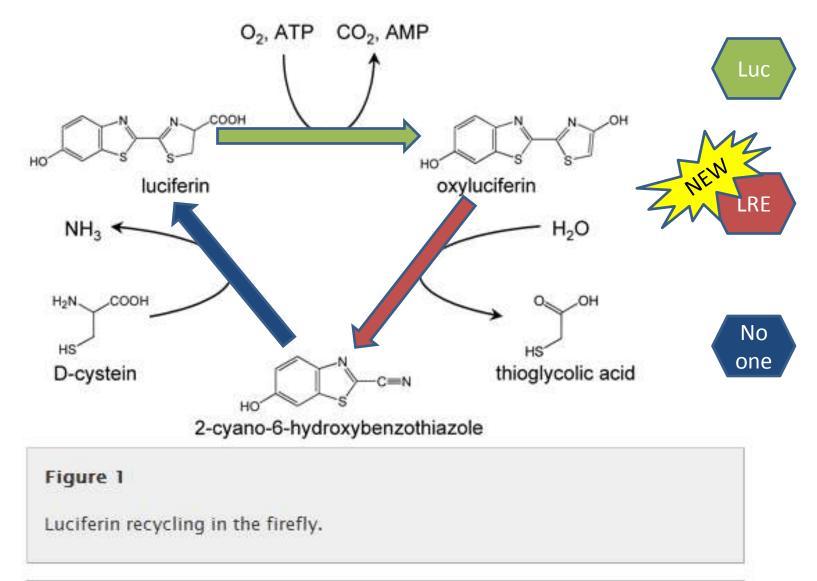



Figure 1. Luciferase-catalyzed transformation of D-luciferin (1) into oxyluciferin (3).

Notice that while luciferin is a quiral protein, oxyluciferin is not.

How to Recycle oxyluciferin: pathway

How to Recycle oxyluciferin: enzyme

Meet:

Luciferine Regenerating Enzyme

M	G	Ρ	٧	٧	Ε	K	Т	A	E	L	G	ĸ	Y	T	٧	G	E	G	р	H		D	Н	E	T	ú	T	L	Y
TTC	GTC	GAC	ACC	GTA	GAG	***	ACT	TT	CAT	AAA	TAT	GTA	CCT	TCT	CAS	AM	AAA	TAC	ACG	TT	TGT		6TA	GAT	AN	CTG	GTT	TCT	TTC
F	٧	D	T	۷	E	ĸ	T	F	н	ĸ	Y	٧	Ρ	s	0	ĸ	ĸ	Y	T	F	C	ĸ	۷	D	ĸ	L	۷	s	F
ATI	ATT	ccc	CTT	GCT	GGA	TCC	CCT	660	CGT	III	GTA	GTC	AGT	TTO	GAA	CGT	GAA	ATA	600	ATT	CTT	ACA	TGG	GAT	GGC	GTT	AGT	GCT	GCA
T.	1	P	L	A	G	s	Ρ	G	R	F	٧	٧	s	L	E	R	Ε	1	A	1	L	T	N	D	G	۷	s	A	A
CCT	ACA	AGC	ATA	GAA	GCT	ATT	GTT	AAT	GTO	GAA	CCA	CAC	ATT	AAA	AAT	AAC	AGA	CTC	AAT	GAT	GGC	-	GCA	GAT	COO	CTT	GGC	AAT	CTA
P	Ţ	s	1	E	A	1	٧	N	۷	Ε	P	н	1	ĸ	N	N	R	L	N	D	G	ĸ	٨	D	Ρ	L	Ĝ	N	L
TGO	ACA	GGT	ACA	ATG	GCT	ATT	GAC	GCT	GGT	CTO	000	GTA	GGA	CCG	GTO	ACT	GGC	AGT	TTA	TAT	CAT	TTA	GGG	GCT	GAT		AAG	GTA	AAA
W	T	G	T	M	٨	1	D	A	G	L	P	V	G	P	V	T	G	s	L	Y	н	L	G	٨	D	ĸ	ĸ	٧	ĸ
ATC	CAC	GAG	AGC	AAC	ATA	GCT	ATA	GCA	AAT	GGG	CTO	ace	TGG	A61	AAT	GAT	TTG	iAAS	AAA	ATC	TAT	TAT	ATT	GAT	TCS	666	AAA	AGA	AGA
M	н	Ε	s	N	1	A	1	A	N	G	L	A	w	s	N	D	ι	к	к	M	Ŷ	Ŷ	ı.	D	s	G	к	R	R
GT/	GAD	GAG	TAC	GAT	TAT	GAT	GCT	TCI	ACA	TTA	TCC	ATC	AGC	AAT	CAJ	CGO	OCA	TTA	TT	ACT	TI	GAA	AAG	CAT	GAA	GTG	CCT	GGA	TAT
٧	Ð	E	Y	D	Y	D	A	ŝ	T	L	s	1	s	N	0	R	p	L	F	T	F	Ε	к	н	Ε	٧	P	G	Y
CC	GAT	GGT	CAA	ACA	ATT	GAT	GAG	GAG	GGT	AAT	TT	TGG	GTT	GCC	GTT	TT	CAN	GGA	CAG	CG/	ATT	ATT	-	ATO	AGT	ACC	CAA	CAA	CCG
р	D	G	0	T	ï	D	Ε	E	G	N	L	W	۷	٨	۷	F	0	G	0	R	1	1	ĸ	1	S	T	0	0	P
GAU	ISTO	TT	CTO	GAT	ACC	STA		ATA	ACC/	GAT	CCI	CAG	GTO	ACC	TCT	GT/	ISC.	III	GGC	GGT	icce	AAT	TTG	GAT	GAA	CTG	CAT	GTA	ACA
E	٧	L	L	D	T	٧	ĸ	1	ρ	D	P	0	٧	T	s	٧	A	F	G	G	Ρ	N	L	D	E	L	H	٧	T
Tes	IGCI	661	CTT	CAG	CTT	GAC	GAC	AGT	TCI	TTA	GAC	AA	AGT	TT	GTI	AAT	GGG	CAC	GTC	TAC	AGA	GTA	ACA	GGT	TTA	GGC	GTC		GGT
1.44		6	1	0	1	D	D	S	S	1	D	ĸ	s	L	V	N	G	H	٧	Y	R	V	T	G	L	G	V	ĸ	G
S	- A																												

Figure 6

Nucleotide sequence of A-LRE cDNA and deduced amino acid sequence. The N-terminal and partial amino acid sequences determined by Edman degradation are *boxed* and*underlined*, respectively.

in Photinus pyralis ergo:

- Sustainable reconversion reaction of oxyluciferin into D-luciferin.
- Quirality of D-luciferin donated by D-cysteine.
- With L-cysteine, oxyluciferin becomes Lluciferine.
- However, only D-luciferin has luminescent properties!
- Ergo: we need either D-cysteine or D-luciferin

Enter Magic Enzyme

- Magic Enzyme will stereoisomericaly bioinverse L-luciferin into D-luciferin
- Magic Enzyme will be simple and cheap
- Magic Enzyme will be coded by a few genes
- Magic Enzyme will be expressable in E. coli
- Magic Enzyme won't have complexities...
- Does Magic Enzyme exist?

A Voice from Beyond

 "We previously reported that in the presence of ATP, Mg2+ and CoA, firefly luciferase exhibits coenzyme A ligase (CoA-ligase) activity on L-luciferin in vitro, but not on Dluciferin, to give luciferyl-CoA"

Magic Quirality Conversion

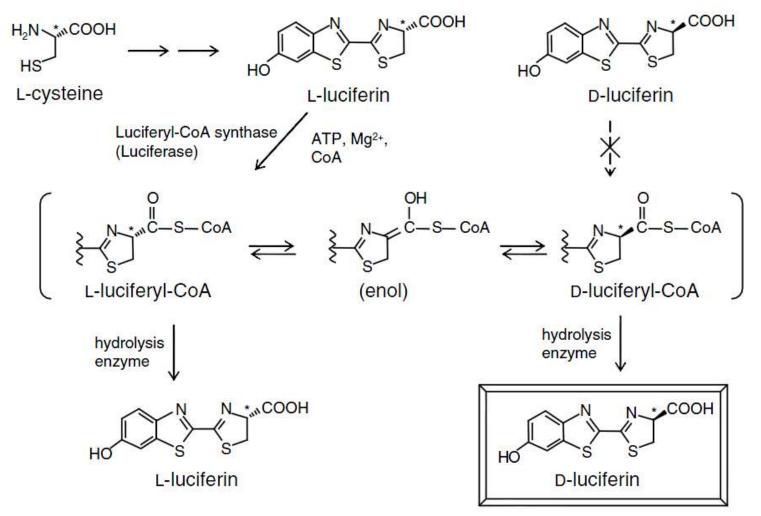


Fig. 5. Proposed biosynthetic pathway of D-luciferin. L-luciferin is produced from natural L-cysteine. L-Luciferin is converted into L-luciferyl-CoA that is easy to racemize by enolization. Hydrolysis of D-luciferyl-CoA gives the bioluminescent substrate, D-luciferin.

The Prestige

- Magic enzyme is Luciferase!
- "Lembert first reported the light production" from L-luciferin and proposed that L-luciferin was racemized to give D-luciferin and it was effectively stimulated by the addition of pyrophosphate. This racemization is an in vitro reaction of luciferase in the absence of CoA. In the presence of CoA, L-luciferin is readily converted into luciferyl-CoA."

Huh?!

- Initial medium inoculation with D-luciferin
- Luciferase takes D-luciferin, produces oxyluciferin
- Oxyluciferin is tranformed into L-luciferin via action of LRE with L-cysteine
- L-luciferin is transformed into D-luciferin through Luciferase action

- We CAN use Photinus pyralis luciferase
- Suggested red-shifted mutant: Ser284Thr shines at 615nm

Sources

Special Issue Reviews and Accounts

ARKIVOC 2909 (i) 265-288

D-Luciferin, derivatives and analogues: synthesis and in vitro/in vivo luciferase-catalyzed bioluminescent activity

Giuseppe Meroni, Mehdi Rajabi and Enzo Santaniello*

Department of Medicine, Surgery and Dentistry and Centre of Molecular and Cellular Imaging (IMAGO), Facoltà di Medicina e Chirurgia, Università degli Studi di Milano cio Ospedale S. Paolo - Via A. di Rudini, 8- 20142 Milano, Italy E-mail: <u>enzo.santaniello/@unimi.it</u> The Research of Department (Comparison) in the Association of Strings, Inc. in The Association Strings, Inc.

Vol. 375, No. 38, Inter of Deptember 20, pp. 19508 - 19518, 2011

Oxyluciferin, a Luminescence Product of Firefly Luciferase, Is Enzymatically Regenerated into Luciferin[®]

> Received for publication, June 15, 2501, and in revised form, June 27, 2001 Published, JBC Papers in Press, July 16, 2001, DOI 10.1074/jbc.M108528200

Keiko Gomi and Naoki Kajiyamat From the Research and Development Division, Kibiaman Corporation, Noda du, Chiba 278-0027 Japan.

Pratein Engineering, Design & Scheetlinn vol. 18 no. 12 pp. 551–587, 2005 Published unline October 21, 2005 doi:10.1193/ptotein/gc006

Elyse Shapiro¹, Connie Lu² and François Baneyx^{1,2,3}

³To whom correspondence should be addressed.

E-mail: haneys the washington edu

Departments of ¹Chemical Engineering and ²Bioengineering, University of Washington, Box 351750, Seante, WA 98195-1750, USA

A set of multicolored *Photinus pyralis* luciferase mutants for *in vivo* bioluminescence applications

FEBS Letters 580 (2006) 5283-5287

Stereoisomeric bio-inversion key to biosynthesis of firefly p-luciferin

Kazuki Niwa^{a,b}, Mitsuhiro Nakamura^c, Yoshihiro Ohmiya^{a,o}

⁸ Research burinute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Japan ¹⁰ National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Japan ¹⁰ Surgerand Research Institute, Tokyo Institute of Technology, Japan

Received 6 June 2000; revised 7 August 2000; accepted 30 August 2006

Available online 11 September 2006

Edited by Judit Ovidi

doi:10.1016/j.ab.2005.07.015 | How to Cite or Link Using DOI Copyright @ 2005 Elsevier Inc. All rights reserved. Permissions & Reprints

Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications

Bruce R. Branchini^{a,} 🗐, 🖂, Tara L. Southworth^a, Neelum F. Khattak^a, Elisa Michelini^b and Aldo Roda^b

^aDepartment of Chemistry, Connecticut College, New London, CT 06320, USA

^bDepartment of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy Received 4 May 2005. Available online 8 August 2005.