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An optimization framework based on the use of hybrid models is presented for
preparative chromatographic processes. The first step in the hybrid model strategy
involves the experimental determination of the parameters of the physical model, which
consists of the full general rate model coupled with the kinetic form of the steric mass
action isotherm. These parameters are then used to carry out a set of simulations
with the physical model to obtain data on the functional relationship between various
objective functions and decision variables. The resulting data is then used to estimate
the parameters for neural-network-based empirical models. These empirical models
are developed in order to enable the exploration of a wide variety of different design
scenarios without any additional computational requirements. The resulting empirical
models are then used with a sequential quadratic programming optimization algorithm
to maximize the objective function, production rate times yield (in the presence of
solubility and purity constraints), for binary and tertiary model protein systems. The
use of hybrid empirical models to represent complex preparative chromatographic
systems significantly reduces the computational time required for simulation and
optimization. In addition, it allows both multivariable optimization and rapid
exploration of different scenarios for optimal design.

1. Introduction
Currently, several well-developed mathematical ap-

proaches exist for the optimization of chromatographic
processes. Most of these approaches have been restricted
to the use of physical models that are based on the
standard transport and thermodynamic descriptions of
these systems (Gallant et al., 1996; Natarajan et al.,
2000b; Guiochon et al., 1994). Felinger and Guiochon
(1993 and 1996) used a simplex-based technique to
maximize production rates in overloaded elution and
displacement chromatography for a Langmuirian iso-
therm. Suwondo et al. (1993) employed a generalized
reduced gradient method to maximize throughput in
ideal linear chromatography. Felinger and Guiochon
(1996) suggested the use of the product of production rate
and yield as an alternative objective function. Luo and
Hsu (1997) used an iterative scheme to optimize the
gradient slope in nonideal, linear ion exchange protein
chromatography. In addition, we have developed iterative
optimization schemes for step (Gallant et al., 1995), linear
gradient (Gallant et al., 1996), and displacement systems
(Natarajan et al., 2000). All of the current optimization
approaches (Gallant et al., 1995a; Gallant et al., 1996;
Natarajan et al., 2000; Felinger and Guiochon, 1996;
Suwondo et al., 1993) either use a single variable
optimization and/or are unfavorable for exploration of
different design scenarios. Moreover, these approaches
employ physical models that are typically represented by
coupled partial differential equations, making nonlinear
multivariable optimization computationally expensive.

Clearly, there is a need to develop more efficient strate-
gies for chromatographic optimization.

Even though a sustained effort has been made toward
development of comprehensive first principles models
that can describe mass transfer and kinetics of biomol-
ecules in chromatographic processes, the application of
these models in multivariable optimization is hampered
by a lack of a computationally economical framework.

Major advances in the area of high-speed parallel
computing and development of faster computers in recent
years has produced significant increases in the usage of
in silico predictions and large-scale optimization for
various applications. In the current work, we employ
high-speed computing to carry out a large number of
simulations with the physical model (described below) to
obtain the data required to generate neural-network-
based empirical models. The motivation for the use of
both physical and empirical models is to complement the
knowledge of the physics from the physical model with
the simplicity and low computational cost of the empirical
model. Hence, the hybrid model formulation has the
advantages of both physical and empirical modeling
approaches. Although empirical models can be generated
for various experimental systems, they typically require
a significant number of experiments in order to build a
reliable multivariable model. On the other hand, physical
models have the advantage of requiring relatively few
experiments for parameter estimation but are computa-
tionally expensive. The strategy presented in this paper
permits the development of a functional relationship
between decision variables (e.g., gradient slope, flow rate,
feed load for gradient separations) and the objective
functions (e.g., production rate, yield, maximum solute
concentration), resulting in the development of a lower-
level algebraic model that can be rapidly optimized.
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Table 1 summarizes the advantages of the hybrid
model for optimization by comparing it with the tradi-
tional physical-model-based optimization approach. For
example, dealing with a large number of decision vari-
ables is a critical issue for physical-model-based optimi-
zation, whereas it is not an issue for hybrid-model-based
optimization. This is because the total number of Jaco-
bian evaluations is proportional to the number of design
parameters. Although the identification of optimal oper-
ating conditions for a large number of objective functions
and constraints is a critical issue for physical-model-
based optimization, it is a nonissue for hybrid-model-
based optimization (Nagrath et al., 2002) due to the
optimization of relatively simple algebraic relationships.
One of the most important advantages of hybrid-model-
based optimization is the ability to explore different
design scenarios (Nagrath et al., 2002) without any
additional computational requirements. This is impracti-
cal for physical-model-based optimization strategies be-
cause each exploration requires re-optimization. In ad-
dition, a hybrid model framework permits the straight-
forward coupling of optimal column design with optimal
operating conditions, under different parametric speci-
fications. Finally, the computational time for each func-
tion evaluation is in minutes-hours for physical-model-
based optimization, whereas it is seconds for the hybrid
model strategy.

In the current work, hybrid models are developed for
binary (R chymotrypsinogen A and ribonuclease A) and
tertiary (R chymotrypsinogen A, ribonuclease A, and an
artificial component) model systems. The parameters of
the physical model (the general rate model coupled with
the kinetic form of the steric mass action isotherm) are
experimentally determined and then used to carry out a
set of simulations with the physical model to obtain data
on the functional relationship between various objective
functions and decision variables. The resulting data is
then used to estimate the parameters for neural-network-
based empirical models. The resulting empirical models
are then used with a sequential quadratic programming
optimization algorithm to maximize the objective func-
tion, production rate times yield (in the presence of
solubility and purity constraints), for binary and tertiary
model protein systems. Finally, we employ this hybrid
modeling approach for simultaneous optimal column
design and identification of optimal operating conditions
at various purity levels.

2. Theory
A. Physical Model. The physical model used in this

work is the general rate model, which includes parallel
diffusive (solid and pore diffusion) transport. The parallel
diffusive model has been earlier applied for small mol-
ecules to predict column breakthrough profiles (Ma et al.,
1997) and uptake adsorption analysis (Saunders et al.,
1989). Yoshida et al. (1994) utilized a parallel diffusive
model for uptake analysis of BSA using the Langmuir
isotherm. Ernest et al. (1998) coupled the general rate
model with the stoichiometric displacement isotherm for
small molecules in an ion-exchange setting. In the
current article, the general rate model is coupled with

the kinetic form of steric mass action (SMA) isotherm.
The presented SMA model accounts for both the effect of
salt on the adsorption of biomolecules and the effect of
the steric shielding, which occurs during the binding of
large molecules to ion-exchange surfaces.

In the general rate model, the transport processes
occurring in the bulk phase (eqs 1-3) are convection
along the column axial direction, axial dispersion, and
transport of solute by film transfer from the bulk phase
to the intraparticle surface.

Initial and boundary conditions:

The mass balance in the pore phase (eqs 4 and 5) can
be represented by the Fickian diffusion and the slow
adsorption-desorption (nonequilibrium kinetics) at the
adsorption sites:

Initial and boundary conditions:

The mass balance in the solid phase (eqs 8 and 9) is
due to adsorption-desorption and surface diffusion (hop-
ping of molecules on adsorption sites) in the solid phase.

where yli is the net rate of adsorption-desorption.

Table 1. Issue-Based Comparison of Physical-Model-Based Optimization with Hybrid-Model-Based Optimization

issues physical model hybrid model

number of design parameters critical issue nonissue
operating conditions identification critical issue (order ∼n to n2) nonissue
exploration of different scenarios highly impractical for realistic n nearly trivial
function evaluations minutes-hours seconds
use of complex models practically prohibitive permissible due to parallelization
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Steric Mass Action Based Kinetic Model. The steric
mass action (SMA) formalism accounts for both the effect
of salt on the adsorption of biomolecules and the effect
of the steric shielding, which occurs during the binding
of large molecules to ion-exchange surfaces. A detailed
account of the SMA isotherm is presented elsewhere
(Brooks and Cramer, 1992). Briefly, in the formulation
presented here, we take into account the nonlinear,
nonequilibrium kinetics.

The adsorption-desorption process for proteins can be
represented as shown in eq 12. The net rate of adsorp-
tion-desorption is

At any time, electroneutrality must be satisfied on the
stationary phase in the following manner:

To model the mass transport of salt in the axial direction
and pore phase, eqs 1-7 are used; however, for the mass
balance of salt in the solid phase, the electroneutrality
condition is used to estimate q1 as follows:

where q1 ) qj1 + ∑i)2
N (σi)qi is the total bound concentra-

tion of salt on the stationary phase. The boundary
condition for salt in the solid phase (at the particle
surface) is estimated implicitly by calculating the net rate
of accumulation of proteins in the stationary phase at
the particle surface and can be represented as

It was observed that the electroneutrality is strictly
conserved with this approximation.

B. Generation of Hybrid Model. The schematic for
generating the hybrid model is shown in Figure 1. In the
hybrid model, the physical model is used for the para-
metric simulations to generate n-dimensional response
surfaces, which relate the production rate, yield, and
purity to the other parameters of the system (e.g., feed
load, flow rate, salt gradient). The first step in the
generation of the hybrid model, as shown in Figure 1, is
to determine adsorption isotherm and transport param-
eters using analytical chromatographic experiments. The
adsorption isotherm that is employed for this work is the

steric mass action (SMA) isotherm described in the
previous section. Linear isotherm parameters (Ksmai, νi)
are first obtained by linear gradient experiments (Gallant
et al., 1995). The axial dispersion coefficient (Dai) and
pore diffusion coefficient (Dpi) are then obtained by
unretained height equivalent theoretical plate (HETP)
chromatographic experiments (Natarajan and Cramer,
2000a). The surface diffusion coefficient (Dsi) and desorp-
tion rate constant kdi are then determined from retained
HETP experiments. Finally, the steric factor is obtained
from frontal experiments for the model feed mixtures.

These experiments provide us with an initial set of
parameters for the physical model that is then used for
the generation of the empirical model. The combined
strategy is defined as a hybrid model to differentiate this
approach from empirical models derived solely from
experimental data. Thus, the empirical model will es-
sentially be a mathematical representation of the re-
sponse surfaces. This approach eliminates the need for
a large number of preparative chromatographic experi-
ments to train the model and offers an opportunity to
update the empirical model with real experimental data
(Nagrath et al., 2003). Because the data is generated over
a wide range of input-output space, the hybrid model will
be applicable for the whole design space from which
optimal design parameters are selected. The multi-input
(e.g., feed load, flow rate, salt gradient, length), multi-
output (production rate, yield, maximum solute concen-
tration) empirical model for ion exchange processes is
generated from large sets of data obtained from simula-
tions using the physical model.

C. Data Generation. As indicated above, the physical
model is used for parametric simulations to generate
n-dimensional response surfaces, which relate the pro-
duction rate, yield, and maximum solute concentration
to the decision variables of feed load, flow rate, initial
salt concentration, and gradient slope (for gradient
chromatography), subject to purity as a constraint. The
decision variables are simultaneously varied using ran-
dom Gaussian signals (zero mean, finite variance per-
turbations), and the corresponding outputs are deter-
mined from the simulations obtained with the physical
model. The simulations employ parallel computing to
enable a large number of simulations to be carried out
in a reasonable time. The extensive data generation for
the empirical optimization model is done efficiently by
coupling message passing interface (MPI) subroutines in
the general rate model serial code (written in Fortran
90 to enable parallel computing and to reduce memory
allocation). MPI is a published standard that defines the
calling sequences and behavior of the routines in the
message-passing library. The parallel version of the code
then runs under the control of a parallel run-time system
that allocates processors to the task. The parameter and
operating spaces are judiciously divided between different
processors. Each processor then runs the same code with
a different parameter space and operating conditions and

Figure 1. Generation of hybrid model.
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communicates with each other at the end of the runs to
combine the data generated using individual processors.
The simulations are performed on 48 Netra X1 node Sun
Beowulf Cluster at Scientific Centre for Research &
Computing (SCOREC), RPI.

The outputs that are obtained from the simulations are
the maximum concentration of a solute, production rate,
and yield at various levels of purity.

D. ANN Empirical Model. The data are then used
to develop the multi-input, multi-output empirical model
using multilayer artificial neural networks (ANN). The
main advantage of ANN-based models is the extreme
flexibility and capacity to adequately represent nonlinear
systems of high complexity. The generated empirical
models are validated using a representative data set. The
hybrid empirical models are then used in nonlinear
optimization to obtain the optimum operating conditions
for the process. The computational cost is significantly
less for the optimization of processes modeled by the
ANN-based models as compared with using the funda-
mental physical models.

3. Numerical Method
A. Physical Model. The spatial discretization of the

bulk phase was done using the Galerkin finite element
formulation (Gu et al., 1990). The approach of the
Galerkin finite element method is to solve the system of
equations in residual form until the residuals are zero.

The differential form of the bulk phase eq 4 given above
assumes that the solutions variables can be expanded in
Taylor’s series and therefore are smooth functions with
respect to space and time. However, in the presence of
sharp discontinuities, the solution lacks the sufficient
smoothness requirements and the differential form can-
not be applied. Hence, a more basic form of the equation,
the weak form, which decreases the continuity require-
ments of the solution, was utilized. The dimensionless
form of the transport equations and their discretized form
are presented in the Appendix. The axial dimensionless
length is divided into 110 finite elements, and piece-wise
quadratic shape functions were used to interpolate the
solution over each element domain.

For the particle phase transport, the equations were
discretized using the orthogonal collocation on finite
elements. Lagrange polynomials were used as the trial
functions. Orthogonal collocation was applied over each
element (maximum number of elements was 3), and the
continuity requirement was applied over each intersect-
ing boundary of an element. At the particle boundary (at
the center and the surface of a spherical particle),
boundary conditions (6-7 and 10-11) were employed.
Collocation points used in this work are the roots of the
orthogonal Legendre polynomial. The collocation matrices
(A and B, eqs 26 and 27, respectively) were calculated
using the quadrature rule employing a Lagrange poly-
nomial as the trial functions. The formulation chosen for
calculation of these matrices preserves the orthogonality
of each trial function.

The above discretized particle phase equations were
then coupled with the discretized bulk phase equations.
The concentration variables were assembled element by
element and solved simultaneously using a differential
algebraic solver. The element assembly procedure re-
mains the same irrespective of the discretization proce-
dure being used in the axial domain.

The above discretized bulk phase ordinary differential
equations were solved simultaneously with the particle
phase equations (which are discretized using the orthogo-
nal collocation on finite elements) using the differential
algebraic solver DDASPK (Petzold, 1982).

B. Empirical Model. In ANN topology, each element
of input vectors are connected to each neuron in the input

Figure 2. Schematic showing variables involved in optimiza-
tion of linear gradient chromatographic processes.

Figure 3. Typical neural network architecture connecting variables of a particular component in the current work for a 3 input-3
output system.

Biotechnol. Prog., 2004, Vol. 20, No. 1 165



layer through the modifiable weights in the weight
matrix wi,j. The inputs to each neuron are summed
through a summing junction, and the output of each
neuron is obtained by using a sigmoidal transfer function
(other transfer functions such as linear, tanh could also
be used) over the weighted summed input. Finally, the
neuron layer outputs are either connected to output
neurons (for a single layer network) or to another layer
of neurons in a hidden layer (for multilayer networks).
Figure 3 shows the schematic for a two-hidden-layer
multilayer perceptron. The case shown is a representa-
tive one, having three input and three output vectors.
In the output layer, hidden neurons are connected to the
output vectors. In addition, there is a bias node in each
hidden layer, which is connected to the next layer
neurons. Hence, for the particular case shown in Figure
3, there are two hidden layers and an output layer. The
first and second hidden layers have 10 and 7 neurons,
respectively. The transfer function employed for hidden
layers in the current work is the sigmoidal function, and
for the output layer linear transfer function is utilized.
Using linear transfer function in the output layer helps
in estimating the data beyond the range. For clarity, in
the figure bias nodes are not shown. The weight matrices
are denoted by wi,j. Here index i and j denote the
destination and source layer, respectively.

The innate problem in neural network is the generali-
zation to unseen data. The generalization is essential
because generally a training error can be decreased to a
small value; however, for a new data that were not used
to train the network, the error can still be large. The
simplest way to avoid this overfitting is by increasing the
size of the training set. For many applications, there are
limitations to increasing the data because of economics
and time. Fortunately, this is not an issue in the current
work since a parallel computing environment is used for
the simulations, and the supply of data is limited only
to the number of available nodes in the parallel cluster.

To achieve a good generalization, in the current work,
increasing the amount of data was not the only mecha-
nism adopted. We can find in the literature several
approaches (e.g., early stopping, regularization, jittering,
etc.) to avoid overfitting, each having their own merits.
We first explored all the three mentioned approaches;
however, after extensive study we found that Bayesian
regularization gives better generalization performance
than the early stopping for our system. Hence, in the
current work, we have implemented Bayesian regular-
ization and jittering to improve generalization. In Baye-
sian regularization, both the mean of sum of squares of
network weights and network errors are minimized as

shown in eq 17, and the weights and regularization
parameter (γ) are estimated in an automated fashion
using statistical techniques. The detailed procedure is
given in MacKay (1992).

In the current work, the data obtained from the
physical model is first preprocessed so that it falls within
a [-1, 1] range. The preprocessed data is then divided
into two data sets, training and test set. The training
data set is used to train the network, and the test data
set is used to estimate the generalization error of the
network. The high-performance fast training procedure,
Levenberg-Marquardt backpropogation, which is based
on nonlinear optimization, is used for training the
network. Since it is important for Bayesian regularization
that the network be trained until sum squared error, sum
squared weights, and the effective number of parameters
attain constant values (which essentially indicates that
the network has attained convergence), the network was
trained until the convergence was achieved. Since the
outputs of the generated networks fall in the [-1, 1]
range, the network outputs are postprocessed to convert
the data back into the physical units. All the future
inputs are first preprocessed with the same parameters,
which were used to generate the network, and then are
sent as input to the network.

The middle eluting component (for the tertiary system
studied in this paper) generally experiences overlap from
both the early and later eluting components at higher
feed load conditions. Since the estimated yield and
production rate may essentially be zero (if purity con-
straints are not satisfied), a separate set of simulations
were performed under milder conditions to generate
effective data for modeling the middle eluting component.

4. Results and Discussion
Figure 2 presents the variables involved in a typical

optimization of linear gradient chromatography. The
decision variables are the parameters over which the
designer has direct control. For gradient separation
systems these variables are typically flow rate, gradient
slope, and feed load. While a wide variety of objective
functions have been employed in preparative chromato-
graphic separations, the most common objective function
to date has been the production rate, which is defined as
the amount of product produced at a given level of purity
per unit time, per unit volume of stationary phase

Table 2. Mass Transfer, Isotherm, and Column and Resin Parameters on FF Sepharose (90 µm)

Mass Transfer Parameters

proteins DP (cm2/s) Ds (cm2/s) 3kf L/R (s-1) ú (cm)

R chymotrypsinogen 2.9 × 10-7 1.45 × 10-8 5 1.5 × 10-2

ribonuclease 3.2 × 10-7 4.8 × 10-8 5 3.3 × 10-2

artificial component 2.5 × 10-7 1.45 × 10-8 5 1.4 × 10-2

Isotherm Parameters

proteins kd (mM-ν/s) KSMA σ ν

R chymotrypsinogen 1.5 × 10-7 0.0039 10 4.4
ribonuclease 5.4 × 10-6 0.0077 10 3.7
artificial component 2.0 × 10-7 0.0039 10 4.7

Column and Resin Parameters

proteins εi εp εt D (cm) L (cm) Λ

R chymotrypsinogen 0.31 0.68 0.7792
ribonuclease 0.31 0.68 0.7792 1.6 10.5 1200
artificial component 0.31 0.68 0.7792
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material. Natarajan et al. (2000) have optimized the
production rate using yield as a constraint. Although this
method improves the production rate and satisfies the
yield as a hard constraint, it leads to an inflexible setting.
In other words, this approach provides minimal flexibility
to the chromatographic engineer who may desire to use
yield as a soft constraint. Felinger and Guiochon (1996)
suggested using the product of production rate and yield
as an alternative objective function. In this work, we have
employed the product of production rate and yield as the
objective function. In preparative systems, there are hard
constraints that have to be met to provide a realistic
estimate of the achievable production rate of a separation.
In the current work, solubility and purity are used as

hard constraints and column length is used as the column
design parameter. Note: For the simulations in the
current work, an initial salt concentration of 50 mM was
employed. Further, the separation time was determined
by the time required to completely elute the most
retained component.

The transport and kinetic parameters for the proteins
R chymotrypsinogen A and ribonuclease A were obtained
as described previously (Natarajan et al., 2002) and are
shown in Figure 2. In that paper, it was demonstrated
that the predictions obtained from the physical model
corresponded well with the experiments. In the current
article, we first investigate the linear gradient separation
of a binary model protein mixture (R chymotrypsinogen

Figure 4. Prediction capability of the generated hybrid empirical models for early and later eluting component is shown for total
data (training and test). Prediction for production rates of early and later eluting components are shown in (a) and (b), respectively.
Yield predictions for early and later eluting components are shown in (c) and (d), respectively. Maximum solute concentration
predictions for early and later eluting components are shown in (e) and (f), respectively.
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A and ribonuclease A). To examine a more complex
separation, a ternary mixture consisting of R chymot-
rypsinogen A, ribonuclease A, and a later eluting artificial
component is then investigated at constant (95%) and
varying (91%, 95% and 99%) levels of purity. The
isotherm and transport parameters of the artificial
component is chosen in such a manner that a relatively
low separation factor (1.33) is maintained between the
middle eluting R chymotrypsinogen A and the later
eluting artificial component (note: the average separa-
tion factor between R chymotrypsinogen A and ribonu-
clease A is 1.54). The resulting mass transfer, isotherm,
and column parameters for all three components are
presented in Table 2.

Finally, we employ the hybrid modeling approach for
simultaneous optimal column design and identification
of optimal operating conditions at various purity levels.
In all of the cases examined in this article, the solubility
constraint is satisfied using a hard constraint on the
maximum solute concentration of 5 mM.

A. Binary Systems. This section presents the opti-
mization results for the linear gradient separation of a
binary protein mixture (R chymotrypsinogen A and
ribonuclease A). We first develop the ANN-based hybrid
models for both components as described in the theory
section and then use them in SQP-based optimization.
Figure 4 shows that the generated hybrid models have
excellent predictive ability for outputs (production rate,

Figure 5. Optimization results for two model proteins, R chymotrypsinogen A and ribonuclease A on 90 µm FF Sepharose stationary
phase. Column conditions: diameter 1.6 cm; length 10.5 cm. Feed conditions: ribonuclease A and R chymotrypsinogen A at 0.7 mM
each. ()) Results for early eluting components. (0) Results for later eluting components. All optimal results are presented as a function
of column loadings (DCV). (a) Optimal production rate times yield (mmol/min/mL). (b) Optimal production rate (mmol/min/mL). (c)
Optimal yield. (d) Optimal flow rate (mL/min). (e) Optimal gradient slope (mM/DCV). Here DCV, denotes the dimensionless column
volume.
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yield, and maximum solute concentration) of both com-
ponents. As seen in the figure, yield data (and cor-
respondingly the production rate) was obtained over a
very wide range (from 10% to 100%). This ensures the
accurate mapping of the whole design space of interest
for optimization.

Figure 5a illustrates the variation of the optimum
production rate times yield as a function of feed load for
the early and later eluting components. The correspond-
ing optimum values of production rate, yield, gradient

slope and flow rate are shown in Figure 5b-e, respec-
tively. Several observations can be made from the figures.
The maximum of the production rate times yield for the
later eluting component occurs at a lower column loading
than that for the early eluting component. In addition,
the optimum value of production rate times yield is
higher for the early eluting component than the later
eluting component. The corresponding optimal values of
the production rates are higher for the early eluting
component. It can be seen that at higher loadings there

Figure 6. Optimization results for a tertiary mixture (R chymotrypsinogen A, ribonuclease A, and artificial component) on a 90 µm
FF Sepharose stationary phase. (0) Results for early eluting component (ribonuclease A). ()) Results for middle eluting component
(R chymotrypsinogen A). (3) Results for later eluting component (artificial). Column conditions: diameter 1.6 cm; length 10.5 cm.
Feed conditions: ribonuclease A, R chymotrypsinogen A, and the artificial component at 0.5 mM each. The average separation factor
is 1.55 between ribonuclease A and R chymotrypsinogen A and 1.35 between R chymotrypsinogen A and the artificial eluting component.
All optimal results are presented as a function of column loadings (DCV). (a) Optimal production rate times yield (mmol/min/mL).
(b) Optimal production rate (mmol/min/mL). (c) Optimal yield. (d) Optimal flow rate (mL/min). (e) Optimal gradient slope (mM/
DCV).
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is a relatively sharp decrease in the yield of the later
eluting component. In addition, the optimum flow rate
is relatively independent of the loading for both early and
later eluting components. The optimal gradient slope first
increases, then decreases with increased loading, and
finally remains at a constant lower value for higher
loadings.

At any feed load, as the gradient slope becomes higher,
there is an increased mixed zone between closely retained
components that decreases both the yield and purity of
the desired component. Under low to moderate feed load
conditions, production rate increases when loading is
increased. At high loading conditions, sample displace-
ment effects can become pronounced, resulting in sig-
nificant narrowing of the bands. For relatively low
separation factor systems, any increase in the gradient
slope can result in losses of material because the nar-
rowing of the bands results in losses due to shock layer
effects in these induced sample displacement systems
(Nagrath et al., 2002). Hence, increase in the loading
necessitates lowering of the gradient slope. The optimal
flow rate is the highest for all of the loadings because
the higher production rate attained at higher flow rates

overshadowed any adverse transport effects for this
particular separation.

B. Tertiary Systems. Tertiary Mixture at a Fixed
Purity Constraint. To examine a more complex separa-
tion, a ternary mixture consisting of R chymotrypsinogen
A, ribonuclease A, and a later eluting artificial component
is investigated in this section. We first develop the ANN-
based hybrid model for all three components and then
employ these models in SQP-based optimization. The
optimization results for all three components are pre-
sented in Figure 6. Figure 6a presents the optimal values
of production rate times yield of the tertiary mixture at
a 95% purity constraint. The first component is the early
eluting ribonuclease A, the second component is R chy-
motrypsinogen A, and the third component is the later
eluting artificial component. It is important to note that
the optimal values of the production rate times yield of
the middle eluting component is below the optimal values
of the other components, at all levels of loading since it
experiences overlap from both the early and later eluting
components. The maximal optimal value of the produc-
tion rate times yield of the early eluting component
occurs at a significantly higher loading than the later

Figure 7. Prediction capability of the generated hybrid empirical models for total data (training and test) at three different purity
levels (91%, 95%, and 99%) for the later eluting component. Prediction for production rates, at 91%, 95%, and 99% purity levels for
later eluting component are shown in (a), (d), and (g), respectively. Yield predictions at 91%, 95%, and 99% purity levels for later
eluting components are shown in (b), (e), and (h), respectively. Maximum solute concentration predictions at 91%, 95% and 99%
purity levels for later eluting components are shown in (c), (f), and (i), respectively.
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eluting component. The optimal production rates of the
middle and later eluting components are lower than that
of the early eluting component. Since the separation
factor between the second and third components is
relatively low, the column loading is restricted to moder-
ate values for these components in order to attain higher
production rates at moderate yields. Further, while
sample displacement effects increase the yield of the early
eluting component, the effect is less pronounced for the
later eluting component. It is interesting to note that
although there is a drop in the optimal production rate
values at higher and medium loadings for the early and
middle eluting component, the optimal production rate
of the later eluting component is nearly constant at
higher loadings. On the other hand, the most significant
decrease of the yield with increased loading is observed
for the later eluting component. The optimal flow rate
decreases with increased loading (from medium to higher
loadings) for the middle eluting component as a result
of transport effects at higher loadings. For all of the
components, the optimal gradient slope is at the lowest
value from moderate to high loadings. The increase of
the optimal gradient slope for the early eluting compo-
nent at low loading conditions was observed to be less
pronounced for tertiary systems as compared to binary
systems.

Effect of Purity Constraints. In this section we
investigate the effect of purity as an independent pa-
rameter on the optimal values of objective functions and
decision variables of the later eluting artificial compo-
nent. Optimal values are studied as a function of loading
at purities of 91%, 95%, and 99%. We first develop the
ANN-based hybrid model at these purity levels for the
later eluting component and then use them in SQP-based
optimization. Figure 7 shows that the generated hybrid
models have excellent predictive ability for all purity
levels. As seen in the figure, data is collected over a very
wide range (e.g., yield data, from 5% to 100%). The
optimum values of production rate times yield, production
rate, and yield as a function of loading at purities of 91%,
95%, and 99% for the later eluting component are shown
in Figure 8a-c, respectively. As seen in figures, the
maximum value of the production rate times yield
decreases with increasing purity. Correspondingly, there
is a decrease in the optimal production rate and yield
with increasing purity. Interestingly, the increase from
95% to 99% purity level has a noticeable difference when
compared with a similar increase from 91% to 95% purity
level; there is a sharp decrease in the maximum value
of yield. At 99% purity the effect of feed load was much
more pronounced, resulting in a significant shift toward
lower yields (Figure 8c). In addition, at these purities the

Figure 8. Optimization results for the later eluting component in a tertiary mixture at three different purities on a 90 µm FF
Sepharose stationary phase: (g) 91%, (0) 95%, and (4) 99% purity constraints. Column conditions: diameter 1.6 cm; length 10.5
cm. Feed conditions: ribonuclease A, R chymotrypsinogen A, and the artificial component at 0.5 mM each. All optimal results are
presented as a function of column loadings (DCV). (a) Optimal production rate times yield (mmol/min/mL). (b) Optimal production
rate (mmol/min/mL). (c) Optimal yield.

Biotechnol. Prog., 2004, Vol. 20, No. 1 171



optimum flow rates and optimum gradient slopes are
relatively independent of the loading for the later eluting
component (results not shown).

C. Simultaneous Design and Operating Condi-
tion Optimization. Tertiary Mixture at a Fixed
Purity Constraint. To further illustrate the advantage
of using a hybrid model framework, it was employed for
simultaneous optimal column design and identification
of optimal operating conditions for the ternary feed
mixture. Hybrid models were developed between the
outputs (production rate, yield, and maximum solute

concentration) and inputs (flow rate, gradient slope, feed
load, and column length) as described in the theory
section. Figures 9, 10 and 11 present the optimization
results at 95% purity for the early, middle, and later
eluting components, respectively. In the figures, optimal
results are presented as a function of column loadings
and length.

Figure 9 presents the optimal results when production
rate times yield of the early eluting component is
optimized. As seen in Figure 9b, at higher loadings
the optimal production rate first increases with an

Figure 9. Optimization results as a function of column loadings and column design parameter (length) for an early eluting component
for a tertiary mixture (R chymotrypsinogen A, ribonuclease A, and the later eluting artificial component on a 90 µm FF Sepharose
stationary phase (at 95% puity levels). Column conditions: diameter 1.6 cm. Feed conditions: ribonuclease A, R chymotrypsinogen
A, and the artificial component at 0.5 mM each. (a) Optimal production rate times yield (mmol/min/mL). (b) Optimal production rate
(mmol/min/mL). (c) Optimal yield. (d) Optimal flow rate (mL/min). (e) Optimal gradient slope (mM/DCV).
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increase in length and then decreases when length is
increased beyond its optimal value. The initial increase
of the production rate with an increase in column length
is due to the increased optimal flow rate with an increase
in length. At lower lengths, flow rate has to be decreased
to maintain higher yields. However, when the optimal
flow rate reaches its maximum constrained value, any
further increase in length causes a decrease of the
production rate, because of the increased cycle time.
For the same reason, at lower column loadings, produc-

tion rate continuously decreases with an increase in
length. Interestingly, at higher loadings yield increases
with an increase in column length; however, it is es-
sentially constant at lower loadings. As mentioned
earlier, there is a drop in the optimal flow rate at
higher loadings and lower column lengths. The optimal
gradient slope is mostly constant at the lowest value,
except for lower column lengths and loadings. In general,
the optimal values of decision variables for this partic-
ular mixture at higher column lengths and loadings

Figure 10. Optimization results as a function of column loadings and column design parameter (length) for the middle eluting
component for a tertiary mixture (R chymotrypsinogen A, ribonuclease A, and the later eluting artificial component on a 90 µm FF
Sepharose stationary phase (at 95% puity levels). Column conditions: diameter 1.6 cm. Feed conditions: ribonuclease A, R
chymotrypsinogen A, and the artificial component at 0.5 mM each. (a) Optimal production rate times yield (mmol/min/mL). (b) Optimal
production rate (mmol/min/mL). (c) Optimal yield. (d) Optimal flow rate (mL/min). (e) Optimal gradient slope (mM/DCV).
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were operation at higher flow rate and low gradient
slope.

Figure 10 presents the optimal results when production
rate times yield of the middle eluting component is
optimized. As seen in Figure 10c, to attain a higher yield
at medium to higher loadings for lower to higher column
lengths, the flow rate was decreased from its maximal
value significantly. Under these conditions, the optimal
values of the flow rates are lower than when compared
with the optimization results for the early eluting
component. Again, this is because the overlap of the

second component with the other two solutes and the
low separation factor between individual components
limits the flow rates to moderate values. Interestingly,
there is a clear optimal value of production rate and
production rate times yield at each column length, which
is in sharp contrast to the scenario where the early
eluting component is optimized. As seen in Figure 9b,
optimal production rate experiences only a marginal
decrease at higher loadings and higher lengths for the
early eluting component. As was the case for the early
eluting component, the optimal gradient slope is constant

Figure 11. Optimization results as a function of column loadings and column design parameter (length) for the later eluting
component in a tertiary mixture (R chymotrypsinogen A, ribonuclease A, and the later eluting artificial component on a 90 µm FF
Sepharose stationary phase (at 95% puity levels). Column conditions: diameter 1.6 cm. Feed conditions: ribonuclease A, R
chymotrypsinogen A, and the artificial component at 0.5 mM each. (a) Optimal production rate times yield (mmol/min/mL). (b) Optimal
production rate (mmol/min/mL). (c) Optimal yield. (d) Optimal flow rate (mL/min). (e) Optimal gradient slope (mM/DCV).
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at the lowest value, except for lower column lengths and
loadings. The optimal values of decision variables for this
particular mixture at higher column lengths and loadings
were operation at medium flow rate and low gradient
slope.

Figure 11 presents the optimal results when production
rate times yield of the later eluting component is opti-
mized. Interestingly, at higher column lengths the opti-
mal production rate first increases with an increase in
column loading and then remains essentially constant
at higher loadings. As seen in the Figure 11b, to maintain
higher production rates at higher column lengths and low
loadings, the optimal gradient slope is maintained at
higher values. The optimal values of decision variables
for this particular mixture at higher column lengths and
loadings were operation at high flow rate and low
gradient slope.

The results shown in Figures 9-11 illustrate the
significant differences in optimal behavior that can occur
between early, middle, and later eluting components. It
is also important to note that it would be computationally
unreasonable to carry out this class of optimization using
traditional physical models of preparative chromato-
graphic systems.

Effect of Purity Constraints. The effect of purity as
an independent design parameter on the simultaneous
optimal column design and identification of optimal

operating conditions was investigated for the later eluting
component. Figure 12 presents the optimal results
when length was also included as one of the decision
variables in the optimization. This is in contrast to
the results presented in the previous section (Figures
9-11) where length was not included in the decision
variables for optimization and optimization results
were presented at various column lengths and loadings.
In the current case we can obtain an estimate of the
optimal production rates, yields, flow rates, lengths, and
gradient slopes at various levels of column loadings.
Hybrid models were developed between the outputs
(production rate, yield, and maximum solute concentra-
tion) and inputs (flow rate, gradient slope, feed load, and
column length) at three levels (91%, 95%, and 99%) of
purities. In Figure 12, optimal results are shown as a
function of loadings in volume units (mL) in order to
illustrate the effect of increased loading due to an
increase in length. This is in contrast to the other results
presented above where optimal results were shown as a
function of dimensionless loading volume and column
lengths.

As seen in Figure 12d, while higher column lengths
are required to attain higher production rates and yields
for 99% purity, the optimal column lengths at lower
purity levels are at low values. In addition, the optimal

Figure 12. Optimization results for the later eluting component as a function of column loadings (mL) and column design parameter
(length, cm), at three different purities for a tertiary mixture (R chymotrypsinogen A, ribonuclease A, and the later eluting artificial
component) on a 90 µm FF Sepharose stationary phase. (g) 91%, (0) 95%. and (3) 99% purity constraints. Column conditions: diameter
1.6 cm. Feed conditions: ribonuclease A, R chymotrypsinogen A, and the artificial component at 0.5 mM each. (a) Optimal production
rate times yield (mmol/min). (b) Optimal production rate (mmol/min). (c). Optimal yield.
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column length first increases and then decreases with a
continuous increase in loadings at 99% purity. Interest-
ingly, at lower loadings, optimal yields at 99% purity are
higher than those obtained at 95% purity. At all loadings,
the production rate at 95% purity is higher than that
obtained at 99% purity constraint.

To explain the initial increase and decrease of optimal
column lengths with an increase in loadings at 99%
purity level, we investigate the optimal surface as a
function of column lengths and loadings at 99% purity
constraint. Figure 13 presents the optimal surface results
for the later eluting component at various column load-
ings and lengths at 99% purity. As seen in Figure 13b,
at all loadings, the optimal production rate first increases
and then decreases with a continuous increase in column
lengths. Consequently, in Figure 12d optimal column
length initially increases with an increase in loadings,
to increase the optimal yields. However, it decreases
later with a further increase in loadings to increase
the optimal production rates. Interestingly, there is a
clear difference in the variation of the optimal produc-
tion rates with column lengths at 95% and 99% purity
levels. At 95% purity level, optimal production rate
continuously decreases at all column loadings with an
increase in column lengths, whereas at 99% purity level
there is a clear optima in column length. In addition, the
optimum flow rates for the later eluting component (at

99% purity level) is a function of lower column lengths
at all loadings.

5. Conclusions and Future Work

In this paper we have developed a hybrid model
framework for optimization of preparative chromato-
graphic processes. We have demonstrated that this
strategy is well suited to address a large number of
decision variables, permits the exploration of different
design scenarios, and enables the straightforward cou-
pling of optimal column design with optimal operating
conditions. The hybrid model approach provides flex-
ibility to the chromatographic engineer and dramatically
reduces the computational time required for simulation
and multivariable optimization. It also enables the
estimation of optimal operating conditions, under differ-
ent parametric specifications without any additional
computational requirements. We have recently shown
that this strategy is well suited for multiobjective opti-
mization (Nagrath et al., 2002), which addresses the
priorities and tradeoffs of various competing objectives
and/or constraints in complex nonlinear chromatographic
systems. Future work will employ this hybrid model
approach in concert with the GR2R nonlinear control
method recently developed by the authors (Nagrath et

Figure 13. Optimization results as a function of column loadings and column design parameter (length) for the later eluting
component for a tertiary mixture (R chymotrypsinogen A, ribonuclease A, and the later eluting artificial component on a 90 µm FF
Sepharose stationary phase (at 99% puity levels). Column conditions: diameter 1.6 cm. Feed conditions: ribonuclease A, R
chymotrypsinogen A, and the artificial component at 0.5 mM each. (a) Optimal production rate times yield (mmol/min/mL). (b) Optimal
production rate (mmol/min/mL). (c) Optimal yield. (d) Optimal flow rate (mL/min).
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al., 2003) for improving the performance of large-scale
chromatographic processes by reducing batch-to-batch
variations.

Notation
ci mobile phase concentration (mM)
cfi feed concentration (mM)
cp1 pore phase salt concentration (mM)
Dai axial dispersion coefficient (cm2/s)
Dpi pore diffusion coefficient (cm2/s)
Dsi surface diffusion coefficient (cm2/s)
kfi film mass transfer coefficient (cm/s)
kdi adsorption rate constant (mM-ν/s)
kdi desorption rate constant (mM-ν/s)
KSMA steric mass action isotherm equilibrium constant
L length of column (cm)
qi stationary phase concentration (mM)
qj1 concentration of bound salt that is not sterically

shielded (mM)
q1 total bound concentration of salt on the station-

ary phase (mM)
R particle radius (cm)
uo interstitial velocity (cm/s)
x axial distance (cm)
r radial distance inside the particle (cm)

Greek letters

εi interstitial porosity
εp particle porosity
νi characteristic charge for ith component
σi steric factor
Λ ionic capacity (mM)

Appendix
A. Dimensionless Equations. Equations 1-11 can

be converted into a nondimensional form using the
following dimensionless variables presented in Table 3.

The dimensionless equations for the generalized model
are

The Laplacian ∇s
2C used in eq 19 is defined as

where subscript s indicates that the domain is spherical.

where subscript n denotes the component.

Boundary conditions:

B. Bulk Phase Discretized Equations. To derive the
weak form of the above eq 18, the differential form is
first multiplied by a smooth weighting function W
belonging to a space of functions, W ε Wh

k. The resulting
product is then integrated over an open space-time
domain Ω. Integration by parts then transfers the spatial
derivatives from the fluxes on to the weighting function,
thus decreasing the continuity requirements of the solu-
tion. In turn boundary integrals appear in the weak form.
The weighted residual form of the bulk phase equation
can be written as

where Ω.e is the finite element domain. The integration
by parts of the second order differential terms leads to
the following weak form:

where Cbn
h , Wh are interpolated using shape functions

over an element as Cbn
h ) ∑A)1

nnp NACbn
A , Cbn,i

h ) ∑A)1
nnp NA,i

Cbn
A , and Wh ) ∑A)1

nnp NADA. Since the interpolating func-
tions are chosen to be same for both the solution and
weight space, it leads to a Galerkin form. After substitut-
ing Cbn

h , Wh with the interpolating functions, a set of
nonlinear ordinary differential equations are obtained
which in the matrix form can be expressed as

C. Particle Phase Discretized Equations. Using
orthogonal collocation on finite elements the above equa-

Table 3. Dimensionless Variables Formed for the General Rate Model

τ ) t / L/u0 z ) x / L ê ) r / R Cbi ) cbi / Cfi Cpi ) cpi / Cfi

Φki ) (1 - εp)qmax i / εpCfi Pei ) u0L / Dai Bfi ) kfiL / εpRu0

Nfi ) 3L / R (1 - εb)kfi / εbu0 Npi ) DpiL / u0R
2 Nsi ) DsiL / u0R

2
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h + 1
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h Cbn,i
h dΩe - 1

Pen
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h |Γe +
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tions are discretized for element l and collocation point i
as

For the l th element,

The discretized boundary conditions for the pore and the
solid phase can be represented as

Boundary conditions:
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