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Abstract—Flux balance analysis (FBA) provides a frame-
work for the estimation of intracellular fluxes and energy
balance analysis (EBA) ensures the thermodynamic feasibil-
ity of the computed optimal fluxes. Previously, these tech-
niques have been used to obtain optimal fluxes that maximize
a single objective. Because mammalian systems perform
various functions, a multi-objective approach is needed when
seeking optimal flux distributions in such systems. For
example, hepatocytes perform several metabolic functions
at various levels depending on environmental conditions;
furthermore, there is a potential benefit to enhance some of
these functions for applications such as bioartificial liver
(BAL) support devices. Herein we developed a multi-objec-
tive optimization approach that couples the normalized
Normal Constraint (NC) with both FBA and EBA to obtain
multi-objective Pareto-optimal solutions. We investigated the
Pareto frontiers in gluconeogenic and glycolytic hepatocytes
for various combinations of liver-specific objectives (albumin
synthesis, glutathione synthesis, NADPH synthesis, ATP
generation, and urea secretion). Next, we evaluated the
impact of experimental flux measurements on the Pareto
frontiers. We found that measurements induce dramatic
changes in Pareto frontiers and further constrain the network
fluxes. This multi-objective optimality analysis may help
explain certain features of the metabolic control of hepato-
cytes, which is relevant to the response to hepatocytes and
liver to various physiological stimuli and disease states.

Keywords—Metabolic networks, Energy balance analysis,

Flux balance analysis, Multi-objective optimization, Pareto

optimality, Hepatocytes, Bioartificial liver.

INTRODUCTION

The quantification of intracellular metabolic
fluxes is widely used for investigation of the metabo-
lism in mioorganisms9,10,17–21 and mammalian sys-

tems.1,5–8,11–14,24,25 Flux balance analysis (FBA) uses
stoichiometric and mass balance constraints to com-
pute the intracellular fluxes. Recently, energy balance
analysis (EBA) was developed to ensure the thermo-
dynamic feasibility of the computed fluxes.2–4,23 EBA
imposes the thermodynamic constraints on reaction
fluxes both explicitly and implicitly. Essentially, the
reaction potentials are computed based on the chemi-
cal potentials and then these are used to obtain ther-
modynamic constraints that are based on the first and
second laws of thermodynamics. Thermodynamic
constraints further reduce the feasible solution space
based on stoichiometric constraints alone. Available
measurements, which bring in environmental con-
straints such as certain cell culture conditions, medium
supplements, induced stress and extracellular matrices,
typically limit the feasible solution space even further.
If a sufficient number of measurements is available, the
analysis may yield a unique solution.

Since mammalian systems perform an array of
metabolic functions (protein secretion, detoxification,
energy production), several different objectives need to
be taken into account simultaneously when seeking
optimal fluxes. Typically, several objectives compete
against each other; therefore, only ‘‘Pareto-optimal’’
solutions can be achieved. A solution is said to be
Pareto-optimal if there are no other solutions that can
better satisfy all of the objectives simultaneously.16

Specifically, a Pareto solution is one where any
improvement in one objective necessitates the
worsening of at least one other objective. Non-Pareto-
optimal solutions are sub-optimal and their perfor-
mance is inferior to systems operating and designed
based on Pareto optimality of objectives. The class of
Generate First-Choose Later (GCFL) multi-objective
optimization approaches entails first generating a
representative set of Pareto solutions, and then
choosing the most suitable and appropriate solution
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within this set. The Normal Constraint (NC)
method,15 unlike other popular methods such as the
Normal Boundary Intersection (NBI) method, can
generate complete Pareto frontiers for multi-objective
problems from the full range of Pareto bi-objective
solutions. The NC method essentially generates an
even distribution of Pareto points throughout the
complete Pareto frontier; and it is guaranteed to yield
any Pareto point in the feasible design space. Further,
it is insensitive to objective function scaling, and is
valid for any arbitrary number of design objectives.
Figure 1a shows the reduced feasible space because of
various constraints (stoichiometric, environmental,

and thermodynamic) changes the Pareto surface. As
seen in the figure, the decreased Pareto hypersurface
area ultimately results in the decreased Pareto frontiers
when the hypersurface is projected in two-dimensions.

In the current work, we develop a Normalized
Constraint Energy and Flux Balance Analysis
(NCEFBA) based multi-objective framework for
characterizing the intermediary metabolism of large-
scale metabolic networks. The implementation is gen-
eral and could be easily modified for other metabolic
networks but here it is presented in the context of he-
patic metabolism. In the context of a bioartificial liver
(BAL) device, this multi-objective optimal flux analysis

FIGURE 1. (a) Feasible space reduction due to of the imposed stoichiometric, flux balance, energy balance, and measurement
constraints. The Pareto surface of the feasible space is projected onto the g1g2, g2g3, and g1g3 planes and their corresponding
Pareto frontiers are shown. The mutually orthogonal axes g1, g2, and g3, represent the individual design objectives. (b) Pareto
frontiers and Pareto-optimal solutions shown are for bi-objective maximization and minimization problems.

NAGRATH et al.864



could play an important role in: (a) understanding the
underlying mechanisms of perturbing a sub-optimal
hepatic cellular system towards an optimal state, (b)
optimizing hepatocyte functions in an extracorporeal
BAL device, (c) studying the intracellular activity of
liver under various physiological and disease states,
and (d) the preconditioning and preservation of donor
livers. The presented multi-objective optimization
platform NCEFBA couples the normalized NC
method with both FBA and EBA to obtain multi-
objective Pareto-optimal solutions.

Here the NCEFBA method was implemented to
investigate Pareto-optimal solutions for the hepatic
metabolic network under both gluconeogenic and gly-
colytic conditions. We analyzed various combinations
of liver-specific objectives (albumin synthesis, gluta-
thione synthesis, NADPH synthesis, ATP generation,
and urea secretion). Next, the sensitivity to available
measurements of these Pareto frontiers and changes in
objective inter-optimality is presented. Noticeably,
measurements induced dramatic changes in Pareto
frontiers and further constrained the network fluxes.

THEORY

Metabolic Flux Analysis

The stoichiometric coefficients of the metabolic
reactions are collected into a matrix S, where each
element sij is the coefficient of metabolite i in reaction j.
S has dimensions of M � N, where M is the number of
metabolites and N is the number of reactions. In ma-
trix form the mass balance is written as:

dx

dt
¼ SJ; ð1Þ

where each element xi of x is the intracellular concen-
tration of metabolite i and element Ji of J is the net rate
of conversion in reaction j. External metabolite fluxes
are generally measured (e.g., uptake of glucose, lactate,
amino acids). Because of the very high turnover of the
intracellular pools of most intracellular metabolites, the
time scale of the intracellular metabolic reactions is
short compared to other cellular reactions. Hence, the
pseudo steady state assumption is generally applied to
the metabolite mass balances and thus

Stoichiometric Equality Constraints for Unmeasured
Fluxes

SJ ¼ 0 (Mass Balance ConstraintÞ ð2Þ

Stoichiometric Equality Constraints for Measured
Fluxes

SuJu ¼ �SmJm ðMass Balance ConstraintÞ ð3Þ

where Jm and Ju indicates measured and unmeasured
fluxes, respectively, and Sm and Su contain the stoi-
chiometric coefficients of measured and unknown
reactions, respectively.

A previously described hepatic metabolic net-
work5–8 includes all of the major intracellular path-
ways that account for the majority of central carbon
and nitrogen metabolism found in hepatocytes, namely
the tricarboxylic acid (TCA) and urea cycles, the glu-
coneogenic and glycolytic pathways, the pentose
phosphate shunt, pathways of entry, transamination,
and deamination of amino acids, protein synthesis, and
the major components of lipid metabolism, including
triglyceride synthesis and breakdown and b-oxidation
of fatty acids, in addition to amino acid synthesis and
apolipoprotein degradation. The current hepatic met-
abolic network model (Table 1) includes a few addi-
tional reactions, namely those of the 3-
phosphoglycerate cycle as it is involved in glycerol
production and glutathione synthesis reaction, which
results in a total of 81 reactions (as compared to 76
reactions in the previous model) and 47 metabolites
(Table 2). Glutathione is an important mediator in
detoxification reactions of hepatocytes. The model
assumes pseudosteady-state with no metabolic futile
cycles. These assumptions are discussed in detail else-
where.5–8

Energy Balance Analysis

Energy Balance Analysis imposes constraints based
on law of thermodynamics on the cellular reaction
networks.2,3 For any reaction set, if stoichiometry is
represented by matrix S, l denotes an M-dimensional
vector of chemical potentials, Dl denotes the N-dimen-
sional vector of reaction potentials, then these potentials
can be computed as Dl ¼ STl. The null space matrix of
S (for r linearly independent rows, with r � N) is
denoted byK and forms a basis for the null space ofS, so
that SK = 0. The product of the null space K of the
stoichiometric S with the chemical potential difference
gives the energy balance equation as KDl ¼ 0. This
balances the global potential energy of the network. The
first law of thermodynamics necessitates energy con-
servation, which then leads to an equality constraint as

KTDl ¼KTSTl ¼ 0

ðFirst Law of Thermodynamics-based

Energy Equality ConstraintÞ
ð4Þ

This constraint requires that the sum of reaction
potentials around any cycle of reactions equals zero,
which is similar to Kirchoff’s voltage or loop law of
electrical circuit theory, and is known as the energy
balance constraint of EBA.2–4 The second law of
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TABLE 1. Hepatic stoichiometric reactions.

No Stoichiometry

1 F6P fi G6P Gluconeogenesis

2 F16P2 + H2O fi F6P + Pi

3 2 G3P fi F16P2

4 3Pglyc + NADH + H+ + ATP M G3P + Pi + NAD+ + ADP

5 PEP M 3Pglyc

6 oac + GTP fi PEP + GDP + CO2

7 pyr + CO2 + ATP + H2O fi oac + ADP + Pi +2 H+

1 G6P fi F6P Glycolysis

2 F6P + Pi fi F16P2 + H2O

3 F16P2 fi 2 G3P

4 G3P + Pi + NAD+ + ADP fi 3Pgyc + NADH + H+ + ATP

5 3Pgyc fi PEP

6 PEP + ADP fi pyr + ATP

7 pyr + CoA + NAD+ fi acCoA + CO2 + NADH

8 oac + acCoA + H2O fi ctt+ CoASH

9 ctt +NADþ $ a kgl + CO2 + NADH + H+

10 akgl + NAD+ + CoASH fi sucCoA + CO2 + NADH + H+

11 sucCoA + Pi + GDP + FAD M fum + GTP + FADH2 + CoASH

12 fum + H2O M mal

13 mal + NAD+
M oac + NADH + H+

14 ctr + asp + ATP fi arg + fum + AMP + PPi

15 orn + (CO2 + NH4
+ + 2 ATP) + H2O fi ctr+ 2 ADP + 2 Pi + 3 H+

16 arg + H2O fi urea + orn

17 ala + 0.5 NAD+ + 0.5 NADP+ + H2O M pyr + NH3 + 0.5 NADH + 0.5 NADPH + H+

18 ser fi pyr + NH3

19 cys + 0.5 NAD+ + 0.5 NADP+ + H2O + SO3
2)

M pyr + thiosulfate + NH4
+

+ 0.5 NADPH + 0.5 NADH

20 thr + NAD+ + ATP + CoASH fi gly + acCoA + NADH + H+ + AMP + PPi

21 thr + NAD+ + CoASH fi propCoA + CO2 + NADH + H+ + NH3 + H2

22 2 gly + NAD+ + THF + H2O M NTHF + H+ + CO2 + NH4
+ + ser + NADH

23 3Pglyc + NAD+ + glu + H2O fi NADH + H+ + akgl + ser + Pi

24 trp + 3 O2 + 4 H2O + 2 NAD+ + FAD + CoASH fi Formate + ala + 2 CO2 + NH3

+ 3 NADH + FADH2 + HCO3
) + acacCoA

25 propCoA + CO2 + ATP fi ADP + Pi + sucCoA

26 lys + 2 akgl + 2 NAD+ + CoASH + FAD + 2 H2O + NADP+ fi CO2 + NH3

+ acacCoA + 5 NADH + FADH2

27 phe + O2 + H4biopterin + H+ fi tyr + H2O + H2biopterin

28 tyr + akgl + 2 O2 + H2O fi glu + CO2 + fum + acac

29 pro + 0.5 O2 + 0.5 NAD+ + 0.5 NADP+ fi glu + 0.5 NADH + 0.5 NADPH + H+

30 his + H4folate + 2 H2O fi NH4
+ + N5, N10-CH2-H4folate + glu

31 met + ATP + ser + NAD+ + H2O + CoASH fi PPi + Pi + adenosine + cys + NADH

+ H+ + CO2 + NH4
+ + propCoA

32 val + akgl+3 NAD+ + 2 H2O + FAD + CoA fi glu + 2 CO2 + 3 NADH + 2 H+

+ FADH2 + CO2 + propCoA

33 iso + akgl + H2O + 2 NAD+ + FAD + 2 CoASH fi glu + CO2 + 2 NADH + 2H+

+ FADH2 + acCoA + propCoA

34 leu + akgl + H2O + NAD+ + FAD + ATP + CoASH + HCO3
) fi glu + CO2 + NADH

+ H+ + FADH2 + acCoA + acac + ADP + Pi

35 oac + glu M akgl + asp

36 asn + H2O fi asp + NH3

37 glu + 0.5 NAD+ + 0.5 NADP+ + H2O M NH4
+ + akgl + 0.5 NADPH + 0.5 NADH + H+

38 orn + NAD+ + NADP+ + H2O fi glu + NH4
+ + NADH + NADPH + H+

39 gln + H2O fi glu + NH4
+

40 palm + ATP + 7 FAD + 7 NAD+ fi 8 acCoA + 7 FADH2 + 7 NADH + AMP + PPi Gluconeogenesis

40 8 acCoA + 7 ATP + 14 NADPH + 14 H+ fi palm + 8 CoA + 6 H2O + 7 ADP + 7Pi + 14 NADP+ Glycolysis

41 2 acCoA M acacCoA + CoA

42 acacCoA + H2O fi acac + CoA
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thermodynamics takes the form of an inequality con-
straint for each flux as �JiDli � 0. However, this
equation is written in terms of net fluxes. Beard et al.3

compute the net flux distribution through the reaction
network by introducing the concept of reversibility of
each reaction which entails defining the non-negative
forward and reverse reaction fluxes, J+ and J)

respectively, with jth entries representing the one-way
fluxes through the jth reaction. The vector of net flux
distribution through the reaction network can be then
computed as J ¼ Jþ � J�, which is then used to com-
pute the jth reaction potential as

Dlj ¼ RT ln
J j
�

J j
þ

 !
ð5Þ

where R is the ideal gas constant and T is the tem-
perature.

This relationship leads directly to the second law of
thermodynamics, i.e.,

� J jDl j ¼ �RT J j
þ � J j

�
� �

ln
J j
�

J j
þ

 !
� 0

ðSecond Law of Thermodynamics-based

Energy Inequality ConstraintÞ

ð6Þ

which says that the system must dissipate heat, and
entropy must increase as a result of the work being
done on the system through the external fluxes. For
equilibrium systems, this is an equality since for these
systems Jj ¼ Dlj ¼ 0.

TABLE 1. Continued.

No Stoichiometry

43 NADH + H+ + 0.5 O2 + 3 ADP fi NAD+ + H2O + 3 ATP

44 FADH2 + 0.5 O2 + 2 ADP fi FAD + H2O + 2 ATP

45 gol + NAD+ + ATP M G3P + NADH + H+ + ADP + Pi

46 G6P + 12 NADP+ + 7 H2O fi 6 CO2 + 12 NADPH + 12 H+ + Pi

47 24 arg + 32 asp + 61 ala + 24 ser + 35 cys + 57 glu + 17 gly + 21 tyr + 33 thr + 53 lys

+ 26 phe + 25 gln + 30 pro + 15 his + 6 met + 20 asn + trp + 35 val + 13 iso + 56 leu

+ 2332 ATP fi albumin + 2332 ADP + 2332 Pi

48 glu + 2 ATP + cys + gly + NADPH fi GSH + 2 ADP + 2 Pi + NADP+ + H+

49 gol + 3 acCoA + H2O + ATP fi 3 CoASH + Pi + TG + ADP + Pi

50 lactate + NAD+
M pyr + NADH + H+

51 acac + NADH + H+
M b-OH-butyrate + NAD+

52 TG + 3 H2O fi gol + 3 palm + 3 H+

53 G6P release

54 gol uptake

55 palm release

56 cholesterol ester + H2O fi cholesterol + palm

57 TG stored

58 trp uptake

59 O2 uptake

60 pro uptake

61 glu secretion

62 asn uptake

63 orn secretion

64 arg uptake

65 NH4
+ uptake

66 ala uptake

67 ser uptake

68 gly uptake

69 asp uptake

70 acac production

71 thr uptake

72 lys uptake

73 phe uptake

74 his uptake

75 met uptake

76 val uptake

77 iso uptake

78 leu uptake

79 gln uptake

80 cys uptake

81 tyr uptake
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The other inequality constraint is obtained for
energy balance by ensuring that the total heat dissi-
pation rate of the living system is always positive as
indicated by

hdr ¼ �JTDl > 0

ðInequality Heat Dissipation ConstraintÞ
ð7Þ

Since, hdr! 0 in the limit as J�=Jþ ! 1 compo-
nent-wise while maintaining J ¼ Jþ � J� so to prevent

this physically unrealistic possibility, an additional
inequality constraint

hdrð Þlb� hdr � hdrð Þub
ðInequality Heat Dissipation ConstraintÞ

ð8Þ

is also imposed as part of energy balance analysis.

Pareto Optimality

Table 3 shows some of the definitions and mathe-
matical formulation of the generic terms involved in
multi-objective optimization. The mathematical rep-
resentation of the generic multi-objective optimization
problem is as follows.

Problem P1

min
x

g1 xð Þ; g2 xð Þ; . . . ; gn xð Þf g ðn � 2Þ ð9aÞ

subject to:

fj xð Þ � 0 ð1 � j � rÞ ð9bÞ

hk xð Þ ¼ 0 ð1 � k � sÞ ð9cÞ

xl � xi � xu ð1 � i � nxÞ ð9dÞ

where the vector x denotes the design variables and gi
denotes the ith objective function. Equations (9b)–
(9d) denote the inequality, equality and side con-
straints, respectively. Problem P1 does not yield a
unique solution on its own, as it requires a preference
or prioritization of objectives to obtain a single
optimum solution. The NC method requires anchor
points, gi*, or optimum vertices to obtain the desired
optimal solutions. The ith anchor point (or end point)
is obtained when the generic ith objective is mini-
mized independently. Figure 1b presents a schematic
of a Pareto set for a bi-objective problem. If the de-
sign metric g1 alone is optimized (maximized), then
the optimal value is g�1ðP1Þ. Similarly, if the design
metric g2 alone is optimized, then the optimal value is
g�2ðP2Þ. Here g�1 and g�2 are the anchor values for de-
sign metrics g1 and g2, respectively. The ideal or
Utopian solution (g�1, g

�
2) obtained by the individual

maximization of the objective functions is generally
not a feasible solution of the multi-objective optimi-
zation problem. The arc joining points P1 and P2 is
the Pareto frontier that represents the optimal
tradeoff solutions. Generally, the desired solution can
be chosen from the Pareto set; the line joining two
anchor points in bi-objective cases, the utopia line,
and the plane that comprises all anchor points in the
multi-objective case, the utopia hyper plane. The an-
chor points are obtained by solving Problem PUi,
defined as follows.

TABLE 2. List of metabolites.

No Symbol Metabolite

1 G6P Glucose-6-phosphate

2 F6P Fructose-6-phosphate

3 F16P2 Fructose-1,6-biphosphate

4 G3P Glyceraldehyde-3-phosphate

5 PEP Phosphoenolpyruvate

6 oac Oxaloacetate

7 pyr Pyruvate

8 ctt Citrate

9 akgl a-Ketoglutarate

10 sucCoA Succinyl-CoA

11 fum Fumarate

12 mal Malate

13 arg Arginine

14 orn Ornithine

15 ctr Citrulline

16 NH4
+ Ammonium

17 asp Aspartate

18 his Histidine

19 glu Glutamate

20 gln Glutamine

21 met Methionine

22 thr Threonine

23 val Valine

24 iso Isoleucine

25 phe Phenylananine

26 trp Tryptophan

27 lys Lysine

28 tyr Tyrosine

29 ala Alanine

30 asn Asparagine

31 pro Proline

32 cys Cysteine

33 ser Serine

34 gly Glycine

35 propCoA Propionyl-CoA

36 acCoA Acetyl-CoA

37 palm Palmitate

38 acacCoA Acetoacetyl-Coa

39 acac Acetoacetate

40 gol Glycerol

41 NADH Nicotinamide adenine dinucleotide, reduced form

42 NADPH Nicotinamide adenine dinucleotide phosphate,

reduced form

43 FADH2 Flavin adenine dinucleotide, reduced form

44 O2 Oxygen

45 leu Leucine

46 3Pglyc 3-Phosphoglycerate

47 TG Triglyceride
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Problem PUi

min
x

gi xð Þf g ð1 � i � nÞ ð10aÞ

subject to:

fj xð Þ � 0 ð1 � j � rÞ ð10bÞ

hk xð Þ ¼ 0 ð1 � k � sÞ ð10cÞ

xl � xi � xu ð1 � i � nxÞ ð10dÞ

Normal Constraint Method

The NC method is based on the design space
reductions using reduction constraints. The reduction
constraint is constructed by ensuring the orthogonality

by constructing the dot product between the normal ~w
and r0 an arbitrary point on a plane. The vector
equation of a plane is expressed as

~w � r� r0ð Þ ¼ 0 ð11Þ

To solve for multi-objective solutions, a reduced
feasible space is constructed using the above equation
as

~w � r� gð Þ � 0 ð12Þ

where g is any point in the feasible space. Figure 2a
shows the non-normalized design space and the
Pareto frontier of a bi-objective problem. Figure 2b
represents the normalized Pareto frontier in the nor-
malized design space. In the normalized objective
space, all anchor points are one unit away from the

TABLE 3. Definitions and mathematical formulations of some of the relevant multi-objective optimization keywords used
in this paper.

Terms Mathematical formulation Definition

Multi-objective

optimization

Problem P1

min
x

g1 xð Þ;g2 xð Þ; . . . ;gn xð Þf g ðn � 2Þ
subject to

fj xð Þ � 0 ð1 � j � rÞ
hk xð Þ ¼ 0 ð1 � k � sÞ

xl � xi � xu ð1 � i � nx Þ
The vector x denotes the design variables

and gi denotes the ith objective function

A multi-objective optimization is a problem involving several

competing objectives and constraints. The solution of this

problem is considered the best solution that satisfies the

conflicting objectives

Pareto solution Solutions joining the anchor points and

part of the feasible space

A Pareto solution is one where any improvement in one

objective can only take place at the cost of another objective.

A Pareto set is a set of Pareto-optimal solutions

Design parameters The vector x denotes the design parameters A design parameter is a parameter over which the designer

has direct control. Other terms used in the literature for design

parameters include decision variables, design variables or

decision parameters

Design metric The variable g(x) denotes the vector of

design metrics

A design metric refers to an objective measure of a design

attribute. Other commonly used terms are objective functions,

design criterion, figure-of-merit, goal and performance metric

Design constraint fj xð Þ � 0 ð1 � j � rÞ
hk xð Þ ¼ 0 ð1 � k � sÞ

xl � xi � xu ð1 � i � nx Þ

A design constraint indicates the lower or upper bounds in the

design metrics or design parameters

Anchor value Problem PUi

min
x

gi xð Þf g ð1 � i � nÞ
subject to

fj xð Þ � 0 ð1 � j � rÞ
hk xð Þ ¼ 0 ð1 � k � sÞ

xl � xi � xu ð1 � i � nx Þor

gi� ¼ g1 xi�� �
g2 x i�� �

. . . gn x i�� �� �T
where x i� ¼ argfmin gi xð Þg

The value obtained for a particular design objective if that

design metric alone is optimized, given the bounds on the

design parameters

Nadir point gN ¼ gN
1 gN

2 nN
� �T

where gN
i is

defined as gN
i ¼ max

x
gi xð Þ

A point in the design space where all the objectives are

simultaneously at their worst values
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utopia point, and the utopia point is at the origin. A
bar over a variable implies that it is normalized. The
two anchor points denoted by g�1 and g�2, are obtained
by successively minimizing the first and second design
metrics (Problem PUi) by solving Problem PU1 and
PU2 respectively. The line joining these two points is
the utopia line. The actual optimization takes place in
the normalized design metric space. Let �g be the nor-
malized form of g and gu, the utopia point defined as

gu ¼ g1 x1�
� �

g2 x2�
� �� �T ð13Þ

and ‘1 and ‘2 be the distances between g2� and g1�, and
the Utopia point, gu, respectively (Fig. 2a). Then

‘1 ¼ g1 x2�
� �

� g1 x1�
� �

ð14Þ

‘2 ¼ g2 x1�
� �

� g2 x2�
� �

ð15Þ

The normalized design objectives can then be eval-
uated as

�gT ¼
g1 xð Þ � g1 x1�

� �
‘1

g2 xð Þ � g2 x2�
� �

‘2

� �
ð16Þ

�N1 is defined as the direction from �g1� to�g2�, yielding

�N1 ¼ �g2� � �g1� ð17Þ

Next, the utopia line is divided into m1 ) 1 seg-
ments, resulting in m1 points. A normalized increment,
d1 along the direction �N1 for a prescribed number of
solutions, m1, is obtained as

d1 ¼
1

m1 � 1
ð18Þ

As seen in Fig. 2b, the next step involves generat-
ing a set of evenly distributed points on the utopia
line as

�XPj ¼ a1j�g
1� þ a2j�g

2� ð19aÞ

where

0 � a1j � 1 ð19bÞ

X2
k¼1

akj ¼ 1 ð19cÞ

FIGURE 2. Steps involved for obtaining bi-objective Pareto-optimal solutions using the Normalized Normal Constraint method for
minimization. The mutually orthogonal axes g1 and g2 represent the individual design objectives. (a) Pareto frontier for a mini-
mization problem and the anchor points obtained using non-linear optimization; (b) the usage of anchor points to work in a
normalized objective space; (c) drawing the utopia line and constructing evenly spaced points on the utopia line; (d) constructing
the normal on the utopia line and reducing the feasible space.
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and a1j is incremented by d1 between 0 and 1 (Fig. 2c),
with values of j as j 2 f1; 2; . . . ;m1g.

Figure 2c shows one of the generic points intersecting
the segments used to define a normal to the utopia line.
This normal line is used to reduce the feasible space as
indicated in Fig. 2d. As can be seen, if we minimize �g2
the resulting optimum point is �g2�. By translating the
normal line, we can see that a corresponding set of
solutions will be generated. This is essentially done by
generating a corresponding set of Pareto points by
solving a succession of optimization runs of ProblemP2.
Each optimization run corresponds to a point on the
utopia line. Specifically, for each generated point on the
utopia line, solve for the jth point.

Problem P2 (for jth point)

min
x

�g2 xð Þf g ð20aÞ

subject to:

fj xð Þ � 0 ð1 � j � rÞ ð20bÞ

hk xð Þ ¼ 0 ð1 � k � sÞ ð20cÞ

xl � xi � xu ð1 � i � nxÞ ð20dÞ

�N1 �g� �XPj

� �T� 0 ð20eÞ

This results in a set of vectors for the design parameters,
one vector x for eachPareto point. Then, design objectives
are computed by evaluating the non-normalized design
metrics that correspond to each Pareto point. The non-
normalized design objectives can be obtained through an
inverse mapping of Eq. (16) by using the relation

g ¼ �g1‘1 þ g1 x1�
� �

�g2‘2 þ g2 x2�
� �� �T ð21Þ

Importantly, we note that the generation of the set of
Pareto points is performed in the normalized objective
space, which results in critically beneficial scaling
properties. Since some of the points generated in some
pathological cases will be dominated by other points in
the set, we use a Pareto filter (Table S1) to finally
compute the true Pareto-optimal solutions. This filter
compares a point generated on the Pareto frontier with
every other generated point. If a point is not globally
Pareto, it is discarded. The steps involved and the
essential mathematical formulation for the NC method
for an n-objective case are presented in Table 4.

TABLE 4. Normalized Normal Constraint Method for n-objective.

STEP Functions Formulations

1 Anchor points Obtain the anchor points, gi* for i 2 f1; 2; . . . ng, by solving Problem PUi. Define hyperplane, as the

one that comprises all the anchor points. This plane is called the utopia hyperplane (or, utopia plane)

2 Objectives mapping/

normalization

Compute the Nadir points and Utopia Points. Define L asL ¼ ‘1‘2 . . . ‘n½ �T¼ gN � gu , t

hat leads to the normalized design metrics as�gi ¼
gi�gi x i�ð Þ

‘i
i ¼ 1;2; . . . ;n,

3 Utopia plane vector Define the direction, �Nk from �gk� to �gn� for k 2 f1;2; . . . ;ng as �Nk ¼ �gn� � �gk�

4 Normalized increments Compute a normalized increment, dk along the direction �Nk for a prescribed number

of solutions, mk, along the associated �Nk direction: dk ¼ 1
mk�1 ð1 � k � n � 1Þ

5 Generate utopia

hyperplane points

Evaluate a set of evenly distributed points on the Utopia hyperplane as �Xpj ¼
Pn
k¼1

akj �gk�

where 0 � akj � 1 and
Pn
k¼1

akj ¼ 1. Figure 1c describes how generic points are generated in

the utopia plane, where two planes serve as constraints. Figure 2c shows the resulting uniformly

distributed points on the utopia plane for a two-dimensional case in the normalized objective space

6 Pareto points

generation

A set of well-distributed Pareto solutions in the normalized objective space. For each value of �Xpj generated

in Step 5, the corresponding Pareto solution is obtained by solving the following problem:

Problem Pn

min
x

�gn xð Þf g

Subject to:

fj ðxÞ � 0 ð1 � j � rÞ
hk ðxÞ ¼ 0 ð1 � k � sÞ

xl � xi � xu ð1 � i � nx Þ
�Nk ð�g � �XPj ÞT � 0 ð1 � k � 1Þ

7 Pareto design

metrics values

The design metrics values for the Pareto solutions obtained in Step 6 can be obtained

using the equation gi ¼ �gi ‘i þ gi x i�� �
; i ¼ 1; 2; . . . ;n

Integrated Energy and Flux Balance 871



Normal Constraint Energy and Flux Balance Analysis
(NCEFBA)

This section combines FBA, EBA, and NC con-
straints. In the combined EBA and FBA, non-linear
thermodynamic constraints analogous to electrical
circuit system constraints are included with the linear
FBA constraints. The addition of non-linear thermo-
dynamic constraints leads to a non-linear optimization
problem. To avoid repetition in the presented NC
method we will show here only the fluxes that are
changed in the previously presented NC. There are
changes in anchor points which lead to a different
utopian hyperplane. Further, both FBA and EBA
constraints are added to the NC formulation with the
optimized quantity being the desired fluxes as objec-
tives.

Computation of the Utopia hyperplane: The anchor
points for NCEFBA are obtained by solving the
Problem PUi, which is now defined as follows:

Problem PUi

min
x

gi xð Þf g ð1 � i � nÞ ð22aÞ

subject to:

SuJu ¼ �SmJm ð22bÞ

KTDl ¼ KTSTl ¼ 0 ð22cÞ

J ¼ Jþ � J� ð22dÞ

�JjDlj ¼ �RT Jjþ � Jj�
� �

ln
Jj�
Jjþ

 !
� 0 ð22eÞ

hdr ¼ �JTDl > 0 ð22fÞ

hdrð Þlb� hdr � hdrð Þub ð22gÞ

Jlb � J � Jub ð22hÞ

0 � Jþ � 1 ð22iÞ

0 � J� � 1 ð22jÞ

Jextlb � Jext � Jextub ð22kÞ

Dllb � Dl � Dlub ð22lÞ

where vector x is defined as

xT ¼ JT DlT JTþ JT�
� �

ð22mÞ

and the boundary constraints are meant to be satisfied
component-wise.

Computation of Pareto points: Once anchor points
are obtained, a set of well-distributed Pareto solutions
are generated in the normalized objective space, by
solving Problem Pn:

Problem Pn (for jth point)

min
x

�gn xð Þf g ð23aÞ

subject to:

SuJu ¼ �SmJm ð23bÞ

KTDl ¼ KTSTl ¼ 0 ð23cÞ

J ¼ Jþ � J� ð23dÞ

�JjDlj ¼ �RT Jjþ � Jj�
� �

ln
Jj�
Jjþ

 !
� 0 ð23eÞ

hdr ¼ �JTDl > 0 ð23fÞ

hdrð Þlb� hdr � hdrð Þub ð23gÞ

Jlb � J � Jub ð23hÞ

0 � Jþ � 1 ð23iÞ

0 � J� � 1 ð23jÞ

Jextlb � Jext � Jextub ð23kÞ

Dllb � Dl � Dlub ð23lÞ

�Nk �g� �XPj

� �T� 0 ð1 � n� 1Þ ð23mÞ

where vector x is defined as

xT ¼ JT DlT JTþ JT�
� �

ð23nÞ

and the boundary constraints are meant to be satisfied
component-wise.

The combined algorithm NCEFBA was imple-
mented in MATLAB (Mathworks Inc.) and all simu-
lations were run on a PENTIUM 3.0 GHZ dual
processor. For whole genome-scale applications the
presented algorithm can be easily implemented using
parallel computing in High Performance Fortran 90.16

Hepatic Function Specific Fluxes for Pareto
Optimization

The main goal that we wish to achieve in the
BAL device is for hepatocytes to perform at the highest
level of liver-specific functions. Therefore, for hepatic
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metabolic optimization, the set of objective functions
maximizing urea, albumin, NADPH, and glutathione
synthesis, ATP generation are chosen. NADPH, which
is produced in the pentose phosphate pathway (PPP),
is primarily used in non-proliferating hepatocytes for
cytochrome p450 dependent oxidation reactions
(detoxification reactions) and glutathione synthesis.
Hence, to increase the NADPH flux, the NADPH-
generating oxidative branch of the PPP represented in
a lumped fashion as reaction 46 (Table 1) is maxi-
mized. As a marker of secretory liver-specific function,
we use albumin synthesis, which is maximized by
modulating flux 47. Urea synthesis is primarily derived

from ammonia and aspartate generated through
transamination reactions and is maximized by modu-
lating reaction 16. The tripeptide glutathione (GSH,
c-Glu-Cys-Gly) is an important reductant and has
many detoxifying and cytoprotective effects. The syn-
thesis of glutathione is increased by maximizing reac-
tion 48. The ATP generation is maximized by
increasing the TCA cycle fluxes (11, 43, 44). Figure 3
presents the comprehensive hepatic metabolic network
with all the cycles shown with each reaction and the
constraints for this metabolic network are listed in
Table S2. The complexity of the hepatic metabolic
network shown in Fig. 3, is due to the various
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inter-connected cycles (urea cycle linked with TCA
cycle; TCA cycle linked with fatty acids oxidation;
linkage of Pentose Phosphate Pathway with both glu-
coneogenesis and glycolysis) and the dependence of
hepatocyte specific objectives (albumin synthesis, urea
secretion, NADPH synthesis, ATP generation, gluta-
thione synthesis) on all of the cycles. Specifically, any
change induced in one objective alters the availability
of substrates for other objectives resulting in a tradeoff
or competing behavior in various objectives. It is
important to emphasize that the more branched the
network, the higher the tradeoff between various
objectives.

RESULTS

Pareto-optimal solutions are accepted solutions of
multi-objective optimization problems, and can serve
as a useful tool to understand the underlying tradeoffs
between conflicting design objectives and cellular
phenotypes. Pareto optimality analysis has been
applied to numerous disciplines and more recently to

cellular systems.22 As mentioned earlier, usage of FBA
alone can lead to thermodynamically infeasible fluxes.
Consequently, we chose to combine both FBA and
EBA constraints with Pareto optimality to optimize
hepatocellular function in the context of a BAL device.
As part of this analysis, we first obtained Pareto
frontiers between various bi-objective combinations of
liver-specific functions (albumin synthesis, urea secre-
tion, NADPH synthesis, GSH synthesis, and ATP
generation). This was done for hepatocytes in a glu-
coneogenic state and in a glycolytic state. Next, for a
representative case, i.e., ATP generation vs. urea
secretion, we compared the Pareto frontier using
NCEBFBA (i.e., both FBA and EBA) with FBA
alone. Lastly, we obtained the Pareto solutions in the
presence of measurement constraints. The experimen-
tally measured flux data for gluconeogenic and glyco-
lytic state were taken from Chan et al.,5,6 respectively.

Pareto Frontiers of Liver-Specific Functions

Pareto optimality analysis here is carried out first
in gluconeogenic hepatocytes (Fig. 4) and then for
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glycolytic hepatocytes (Fig. 6). This distinction was
necessary because the hepatic metabolic network used
in each case is different. Note that in both figures, the
same panels analyze the same objectives to facilitate
the comparison of results obtained in the gluconeo-
genesis and glycolysis modes. For each Pareto curve
shown in Fig. 4 for gluconeogenic hepatocytes, Fig. 5
shows the relative flux changes that are necessary when
switching objective priority. This information is sum-
marized in Table 5, where important groups are clus-
tered together. Similarly, for each Pareto curve shown
in Fig. 6 for glycolytic hepatocytes, Fig. 7 and Table 6
summarize the flux changes that are necessary when
switching objective priority. Supplementary Tables S3
and S4 provide the comprehensive set of flux data that
are summarized in Figs. 4 and 6, respectively.

The bi-objective Pareto-optimal solutions were first
obtained using the NCEFBA approach for various
binary combinations of liver-specific objectives in glu-
coneogenic hepatocytes (Fig. 4). The Pareto frontiers
for albumin synthesis vs. urea secretion, glutathione
synthesis vs. albumin synthesis, NADPH synthesis vs.
albumin synthesis, glutathione synthesis vs. urea
secretion, ATP generation vs. albumin synthesis, and
ATP generation vs. urea secretion are shown in
Figs. 4a–4f, respectively.

As seen in Fig. 4, all of these objectives have a
tradeoff region with each other. For example, we
cannot have both albumin and urea synthesis at their
maximal values. Additionally, there is a tradeoff
between other liver-specific functions such as GSH
and albumin synthesis, NADPH and albumin
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FIGURE 5. Distribution of flux changes when moving along the Pareto surface in Fig. 4: (a) % Flux changes from point A to point
B in Fig. 4a; (b) % Flux changes from point C to point D in Fig. 4b; (c) % Flux changes from point E to point F in Fig. 4c; (d) % Flux
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synthesis, GSH synthesis and urea secretion, ATP
synthesis and albumin synthesis, and ATP synthesis
and urea secretion. As seen in these figures, the
tradeoff region or range of Pareto-optimal solutions
(how far the optimal value is from the ‘‘anchor va-
lue’’) for albumin synthesis is very high compared to
NADPH, GSH and ATP synthesis and urea secre-
tion. Several other combinations were also tested and
all of them indicated Pareto optimality between
various objectives (data not shown). Figure 5 pre-
sents the metabolic flux profiling of Pareto-optimal
fluxes throughout the tradeoff region, which shows
the changes required in flux values and direction
(i.e., increasing or decreasing) as the objective pref-
erence is changed from one objective to another. The
corresponding flux values for these cases are pre-
sented in Table S3.

The Pareto frontiers for various binary combina-
tions of objectives were also obtained for glycolytic
hepatocytes (Fig. 6). As in the case of gluconeogenic
hepatocytes, these objectives have a tradeoff region
with each other, and some objectives change over a
wide range (e.g., albumin, urea, and GSH) while some
change only little (NADPH and ATP). Figure 7 pre-
sents the metabolic flux profiling of Pareto-optimal
fluxes throughout the tradeoff region, which shows the
changes required in flux values and direction (i.e.,
increasing or decreasing) as the objective preference is
changed from one objective to another. The corre-
sponding flux values for these cases are presented in
Table S4.

Figure 4a examines the tradeoff between albumin
and urea secretion in gluconeogenic hepatocytes.
Many flux changes were required to go from Pareto-
optimal solutions ‘‘A’’ to ‘‘B’’ in Fig. 4a, in other
words, when going from a state of high-albumin/low-
urea secretion rate to a low-albumin/high-urea secre-
tion rate. As seen in Fig. 5a and summarized in
Table 5, this change required increasing marginally
gluconeogenic fluxes (1–9), increasing moderately urea
cycle fluxes (14–15), decreasing formation of glutamate
(38–39), increasing oxidation of triglycerides (52),
decreasing uptake of both glucogenic (proline, 60;
serine, 67; aspartate, 69; threonine, 71; phenylalanine,
73; methionine, 75; valine, 76; isoleucine, 77; gluta-
mine, 79, tyrosine, 81) and ketogenic (lysine, 72; leu-
cine, 78) amino acids, with the exception of glycine (34)
uptake, which was increased. Arginine (64) uptake rate
did not change because it was at its maximum at both
optimal points. Histidine (18) uptake increased
because it results in an increase of a-ketoglutarate. The
uptake of pyruvate-forming amino acids (alanine, 66;
serine, 67; and threonine, 71), fumarate-forming amino
acids (phenylalanine, 73; and tyrosine, 81), and succi-
nyl CoA-forming amino acids (methionine, 75; valine,T
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76; and threonine, 71), which play a major role in
albumin synthesis, were decreased.

When considering the tradeoff between albumin and
urea secretion in glycolytic hepatocytes (Figs. 6a and
7a), the main difference with the case of gluconeogenic
hepatocytes was in the b-oxidation flux which was
higher in gluconeogenesis and decreased in glycolysis.
This is expected because glycolysis is dominant in the
fed state and gluconeogenesis in the fasted state. Fur-
ther, the production of ketone bodies through b-oxi-
dation occurs mostly in the fasted state.

Next, we investigated the tradeoff between gluta-
thione and albumin synthesis in gluconeogenic he-
patocytes. The Pareto curve is shown in Fig. 4b. Going
from Pareto-optimal solutions ‘‘C’’ to ‘‘D’’ also re-
quired many flux changes, which are reported in
Fig. 5b and Table 5. There was a marginal increase in
urea cycle fluxes (14–15), a decrease in lipid uptake (52)
and lipid stored (57), and a significant increase in
aspartate uptake (69). Additionally, the uptake of both
gluconeogenic amino acids (60, 67, 69, 71, 73, 76, 77,

79, and 81) and ketogenic amino acids (72, 78) in-
creased. The corresponding flux values for NADPH
synthesis decreased. There were no significant differ-
ences in the results of this analysis when considering
glycolytic hepatocytes (Figs. 6b and 7b, and Table 6).

Considering the tradeoff between NADPH synthesis
and albumin synthesis (Figs. 4c and 6c), flux changes
required to move from points E to F along the Pareto
frontier were generally similar in both gluconeogen-
ic and glycolytic hepatocytes (Figs. 5c and 7c), with
the exception of b-oxidation, electron transport (43,
44), lipid uptake and lipid storage fluxes. This is
because fatty acid synthesis significantly consumes
NADPH (14 molecules of NADPH per molecule of
palmitate).

Considering the tradeoff between glutathione syn-
thesis and urea secretion (Figs. 4d and 6d), the changes
in flux required to move from points G to H along the
Pareto frontier were also generally similar in both
gluconeogenic and glycolytic hepatocytes (Figs. 5d and
7d), with the exception of aspartate uptake (69).
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FIGURE 6. Pareto frontiers for bi-objective problems in hepatocytes operating in a glycolysis mode. Five major hepatic functions
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Considering the tradeoff between ATP synthesis and
albumin synthesis (Figs. 4e and 6e), the changes in flux
required to move from points I to J along the Pareto
frontier significantly differed between gluconeogenic
and glycolytic hepatocytes (Figs. 5e and 7e), mainly
with respect to gluconeogenesis fluxes (2–6), and TCA
cycle fluxes (8–13). In the gluconeogenesis mode, TCA
cycle fluxes are higher because of increased demand to
produce ATP (gluconeogenesis consumes ATP too),
since glycolysis itself produces ATP (2 molecules of
ATP for 1 molecule of glucose consumed).

Considering the tradeoff between ATP synthesis and
urea synthesis (Figs. 4f and 6f), the changes in flux
required to move from points K to L along the Pareto
frontier in both gluconeogenic and glycolytic hepato-
cytes were mainly lipid uptake (52), TCA cycle (8),
aspartate uptake (69) and the uptake of gluconeogenic

and ketogenic amino acids. This is expected because
higher urea secretion could be achieved with increased
uptake of arginine or aspartate under gluconeogenic
conditions. Higher urea secretion has been seen to
require an increase in gluconeogenic fluxes and this is
coupled with an increase in TCA cycle fluxes, which
necessitates an increase in aspartate uptake.

Effect of FBA+EBA on Pareto Frontier Compared to
FBA Alone

We compared Pareto frontiers for the representative
case of ATP synthesis vs. urea secretion considering
FBA (i.e., mass balance) constraints only and then
both FBA and EBA (i.e., both mass balance and
thermodynamic) constraints. Figure 8a shows the
Pareto frontiers when hepatocytes are in a glycolysis
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FIGURE 7. Distribution of flux changes when moving along the Pareto surface in Fig. 6: (a) % Flux changes from point A to point
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mode. The addition of EBA constraints generally re-
duced the feasible space of the flux distribution, and
changed the Pareto frontiers accordingly. For example,
for the representative case of ATP synthesis vs. urea
secretion in glycolytic hepatocytes (shown in Fig. 8a),
the Pareto frontier obtained using both FBA & EBA
constraints was below that obtained using FBA alone.
Furthermore, the fluxes obtained using both ap-
proaches were vastly different throughout the Pareto
frontier. Figures 8b–8d show the effect of adding EBA
constraints on the Pareto-optimal solutions A, B, and
C, respectively, and the corresponding flux values are
presented in Table S5. In all cases, EBA reduced the
feasible space. It is to be noted that urea secretion (flux
16 on the abscissa) was kept constant to analyze these
differences. Essentially, keeping urea secretion con-
stant is necessary to compare the Pareto solutions
obtained after different measurements.

As seen in Figs. 8b–8d several glycolytic fluxes (2–6)
and catabolic fluxes that produce pyruvate (17, 18, and
19) were changed at points A, B, and C on the Pareto
frontier when adding EBA constraints. On the other
hand, there was a marginal difference in TCA cycle
flux (8) at Pareto solution A, and no difference at
points B or C. Similarly, when going from A to C,
there was a decreased difference in the uptake of suc-
cinyl CoA forming amino acids (threonine, 71,
methionine, 75, and valine, 76). Notably, the difference
at point A in the aspartate production through
asparagine (36) first increases with the increased urea
secretion, then the difference decreases significantly at
Pareto solution B. Throughout the Pareto frontier
there was a decreased ketone body production (41)
when adding EBA constraints. The change in lipid
uptake and lipid storage fluxes when adding EBA
constraints became more prominent when going from
point A to point C.

Effect of Measured Fluxes on Pareto Frontiers

The incorporation of experimental measurements
also reduced the feasible space for the fluxes and the
Pareto-optimal solutions (Fig. 9). The control case has
no measurements and is labeled as M0 (shown as black
dots in Fig. 9). Experimental measurements were
included as equality constraints in the stoichiometric
matrix according to Eq. (3). For this analysis, four
different bi-objective sets were examined as examples.
Figure 9 shows the effect of adding four different
measurement sets on the Pareto frontiers. Measure-
ments were included in a sequential fashion. The
Pareto curve M1 (shown as red diamonds) was
obtained after adding lactate (50), glucose (53), and
glutamate (61) measurements. The Pareto curve M2
(shown as blue squares) was obtained after adding toT
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M1 measurements, glutamine (79) and tyrosine (81).
The Pareto curve M3 (shown as yellow triangles) is
obtained after adding to M2 measured fluxes, alanine
(66), serine (67), and glycine (68) flux measurments.
The Pareto curve M4 (shown as green stars) is ob-
tained after adding to M3 measured fluxes, methionine
flux measurement (75). Experimental data for gluco-
neogenesis and glycolysis were taken from (14) and
(16), respectively.

We looked at four representative bi-objective sets
(albumin vs. urea; ATP vs. albumin; glutathione vs.
urea; and ATP vs. urea) to ascertain the changes in
Pareto frontiers. The three first sets are in gluconeo-
genic mode and the last one is in glycolytic mode.

Figure 9a show Pareto frontiers for albumin syn-
thesis vs. urea secretion and Fig. 9b shows the Pareto
frontiers for ATP synthesis vs. albumin synthesis. In
both cases, as more measured data are included, the
anchor points of the Pareto frontiers move towards the
center and eventually become a single point solution.
Figure 9c shows that Pareto frontiers for glutathione
synthesis vs. urea secretion, in the higher glutathione
synthesis range did not change when including mea-
surement sets M1 and M2, although they did when
including measurement sets M3 and M4. Figure 9d

shows the Pareto frontiers for ATP synthesis vs. urea
secretion. Pareto frontiers were lowered when adding
each measurement set. The corresponding fluxes for
these four cases are presented in Table S6. Fig-
ures 10a)10h show the distribution of flux changes for
the cases shown in Figs. 9a–9d respectively.

When considering the albumin vs. urea case
(Fig. 9a), the change in Pareto curve at high-urea
secretion was associated with many differences in
fluxes (Fig. 10a), including a moderate decrease
in gluconeogenic fluxes (2–4), a moderate increase in
TCA cycle flux (8), a decrease in urea secretion (16)
and b-oxidation (40), an increase in electron transport
(43, 44), lipid uptake (52), lipid stored (57), albumin
(47), NADPH (46) and GSH (48) synthesis. The
change in Pareto curve at high-albumin synthesis also
caused flux changes (Fig. 10b), including a moderate
increase in gluconeogenic fluxes (2–6), TCA cycle
fluxes (8, 13), urea cycle fluxes (14, 15) and urea
secretion (16), a significant increase in b-oxidation (40),
electron transport (43, 44), lipid storage (57), NADPH
(46) and GSH (48) synthesis, significant decrease in
lipid uptake (52) and albumin synthesis (47). Addi-
tionally, there was a decrease in uptake of both glu-
coneogenic and ketogenic amino acids.
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FIGURE 8. Effect of adding EBA constraints on optimal fluxes for the representative case of ATP synthesis vs. urea secretion bi-
objective problem in glycolytic hepatocytes. (a) Pareto frontiers using FBA constraints alone (gray line) and FBA + EBA con-
straints (black line). The blue circles are the anchor points and the red circles are selected Pareto solutions A, B, C for which the
complete set of fluxes is provided in Table S5. (b) Distribution of flux changes when adding EBA constraints at point A. (c)
Distribution of flux changes when adding EBA constraints at point B. (d) Distribution of flux changes when adding EBA constraints
at point C. In panels (b–d), the data are expressed as % flux change and the corresponding reaction flux number is shown on the
horizontal axis. Note that urea secretion was kept constant when analyzing these differences.
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When considering the ATP vs. albumin case
(Fig. 9b), incorporation of measurements also changed
the Pareto curve. At high- albumin secretion, the
associated flux differences (Fig. 10c) included a sig-
nificant increase in gluconeogenic fluxes (2–4), TCA
cycle flux (8), and GSH (48) synthesis, a moderate in-
crease in b-oxidation (40), a decrease in urea cycle
fluxes (14, 15), urea secretion (16), lipid uptake (52)
and albumin (47), a moderate decrease in electron
transport (44) and NADPH (46) synthesis. At the an-
chor point of ATP generation on the Pareto curve, flux
changes caused by introduction of the measurements
(Fig. 10d) significantly increased gluconeogenesis
fluxes (2–6), urea cycle fluxes (14, 15), and GSH (48)
synthesis, moderately increased TCA cycle flux (8),
urea secretion (16), and b-oxidation (40), decreased
electron transport (44), lipid uptake (52), albumin
synthesis (47), and NADPH (46). Additionally, there
was decreased uptake of both gluconeogenic and ke-
togenic amino acids.

The effect of measurements on the Pareto curve of
glutathione vs. urea are shown in Fig. 9c. The major
differences in fluxes at the anchor point of high-urea
secretion (Fig. 10e) included a significant increase in
albumin (47), a moderate increase in TCA cycle flux
(8), electron transport (43, 44), lipid uptake (52), and
NADPH (46), a decrease in urea secretion (16), a
moderate decrease in gluconeogenic fluxes (2–6),
b-oxidation (40), and glutathione synthesis (48). As
seen earlier, the increased albumin synthesis necessi-
tates significant increase in the uptake of both glu-
coneogenic and ketogenic amino acids. The major
differences in fluxes at the anchor point of high-glu-
tathione synthesis (Fig. 10f) included a moderate in-
crease in TCA cycle flux (8) and lipid storage, a
significant increase in urea cycle fluxes (14, 15), a de-
crease in electron transport (43, 44), a moderate de-
crease in urea secretion (16) and lipid uptake (52), a
significant decrease in b-oxidation (40) and glutathione
synthesis (48).
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FIGURE 9. Effect of adding flux measurements to Pareto frontiers. Measurements were incorporated as equality constraints in
the stoichiometric matrix. Four different bi-objective cases are shown in panels a–d, respectively: albumin vs. urea synthesis
(gluconeogenesis mode), ATP vs. albumin synthesis (gluconeogenesis mode), glutathione vs. urea synthesis (gluconeogenesis
mode), and ATP vs. urea synthesis (glycolysis mode). The control case has no measurements (M0 in black). The Pareto curve M1
(shown as red diamonds) is obtained after adding measured flux 50 (value of 1.0815 and 1.08 for gluconeogenesis and glycolysis,
respectively) + flux 53 (value of 1.1472 and 0.15 for gluconeogenesis and glycolysis, respectively) + flux 61 (value of )0.3789 and
)0.38 for gluconeogenesis and glycolysis, respectively). The Pareto curve M2 (shown as blue squares) is obtained after adding to
M1 measured + flux 79 (value of 1.8962 and 1.9 for gluconeogenesis and glycolysis, respectively) + flux 81 (value of 0.0319 and
0.032 for gluconeogenesis and glycolysis, respectively). The Pareto curve M3 (shown as yellow triangles) is obtained after adding
to M2 measured flux 66 (value of 0.0316 and 0.032 for gluconeogenesis and glycolysis, respectively) + flux 67 (value of )0.2292 and
)0.23 for gluconeogenesis and glycolysis, respectively) + flux 68 (value of 0.1368 and 0.14 for gluconeogenesis and glycolysis,
respectively). The Pareto curve M4 (shown as green stars) is obtained after adding to M3 measured flux 75 (value of 0.0978 and
0.098 for gluconeogenesis and glycolysis, respectively). Experimental data for gluconeogenesis and glycolysis were taken from
(14) and (16), respectively.
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Albumin-ATP (Gluconeogenesis) System
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Urea-Glutathione (Gluconeogenesis) System
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Urea-ATP (Glycolysis) System
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FIGURE 10. Distribution of optimal flux changes between the anchor points of the system solved without constraints (M0) and
with the maximum number of constraints (M4) for the bi-objective system of Fig. 9. (a) and (b): albumin vs. urea (gluconeogenesis
mode); (c) and (d): albumin vs. ATP (gluconeogenesis mode); (e) and (f): urea vs. glutathione (gluconeogenesis mode); (g) and (h):
urea vs. ATP (glycolysis mode). The absolute flux values are in Table S6. Note that the % flux changes for all figures are on y-axis
and the corresponding reaction flux number is shown on the horizontal axis. Only changes up to 100% are shown in the figure.
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The effect of measurements on the Pareto curve of
urea secretion vs. ATP generation (in glycolysis mode)
are shown in Fig. 9d. The major differences in fluxes at
the anchor points of high-urea secretion and ATP
generations are shown in Fig. 10g and 10h, respec-
tively. We found that addition of the measurements did
not change glycolysis fluxes (1–5) at either anchor
point. On the other hand, at the anchor point of high-
urea secretion (Fig. 10g), there was a significant de-
crease in urea cycle fluxes (14, 15), urea secretion (16),
NADPH (46) and GSH synthesis (48), a moderate de-
crease in electron transport (43), a significant increase
in lipid uptake (52), lipid storage (57), and albumin
(47). The increased albumin synthesis necessitates the
increased uptake of gluconeogenic amino acids. The
major differences in fluxes at the anchor point of high-
ATP generation (Fig. 10h) included a moderate de-
crease in TCA cycle flux (8), a significant increase in
urea cycle fluxes (14, 15) and albumin synthesis (47), a
moderate increase in urea secretion (16), a decrease in
electron transport (44), and a significant decrease in
NADPH and GSH synthesis. Additionally, there was a
significant increase in the uptake of both gluconeogenic
and ketogenic amino acids.

DISCUSSION

Mammalian cells exhibit various phenotypic states
including proliferation, differentiation, etc. Metabolic
flux distributions in these various states must obey
constraints imposed by the environment, reaction
stoichiometry, thermodynamics, and laws of conser-
vation. Mathematically these constraints translate into
a reduction of the feasible space for the flux distribu-
tion. Most of the literature on constraints-based met-
abolic network optimality deals with unicellular
organisms where the main objective is growth of bio-
mass.9,10 In mammalian systems, various phenotypes
are encountered, some of which exhibit proliferation,

and others expression of organ-specific or ‘‘differenti-
ated’’ functions. Several objectives should be consid-
ered before making any conclusions about the optimal
states of such systems. Often times there is a compe-
tition between the various objectives because they are
differentially altered by the constraints. This paradigm
of conflicting objectives is addressed herein using a
class of multi-objective optimality called Pareto opti-
mality. Furthermore, we used the Normal Constraint
method, which yields any Pareto point in the feasible
objective space, guarantees an even distribution of the
Pareto frontier, and is insensitive to design objective
scaling. Combining these concepts with FBA and
EBA, we developed a framework called NCEFBA,
which we applied to the specific case of cultured he-
patocytes.

Hepatocytes are the key cellular component in BAL
devices. The ability to optimize hepatocellular metab-
olism is important to maximize the clinical efficacy of
the BAL, and increasing the function per cell may help
reduce the number of hepatocytes needed in the device.
Hepatocytes express various liver-specific functions
that require common substrates, such as glucose,
amino acids, and so on. Thus, it is expected that
increasing one function (for instance, albumin syn-
thesis) will decrease another (for example, urea secre-
tion). In order to systematically investigate the
tradeoffs between the various hepatocellular functions,
we used NCEFBA. More specifically, we investigated
the interactions among five key hepatocyte metabolic
functions, namely albumin synthesis, urea secretion,
glutathione synthesis, NADPH synthesis, and ATP
generation. These analyses were carried out first in
gluconeogenic hepatocytes (Fig. 4) and then glycolytic
hepatocytes (Fig. 6).

Using NCEFBA, we observed the Pareto optimality
between various liver-specific functions. Some of the
representative bi-objective combinations were shown
in this paper. Here, the implementation was done for
several biobjective combinations in order to develop a

TABLE 7. Objective function flux values for Pareto-optimal solutions in Fig. 4 (for gluconeogenic mode) and Fig. 6 (for glycolysis
mode). The detailed flux values are provided in Tables S3 and S4.

Objectives A B C D E F G H I J K L

Gluconeogenesis

Urea 29.7685 34.56 10.431 10.595 19.752 12.454 30.13 34.465 2.8071 2.601 11.516 33.769

NADPH 0.47 0.53 1.414 0.98 2.985 2.786 1.091 0.825 1.134 1.411 1.008 0.945

Albumin 0.136 0.0126 0.011 0.1296 0.016 0.135 0.00001 0.00001 0.0992 0.139 0.0832 0.01136

GSH 6.837 8.79 14.427 9.585 14.4212 9.345 14.647 10.312 0.083 0.001 1.483 9.395

Glycolysis

Urea 26.717 29.365 14.441 14.388 12.323 9.978 25.304 29.368 8.695 6.28 12.264 28.234

NADPH 1.066 1.098 2.063 1.702 7.443 7.126 2.16 2.077 0.654 0.472 0.456 0.51

Albumin 0.131 0.02 0.012 0.1304 0.0131 0.137 0.00001 0.004 0.0232 0.133 0.0017 0.00001

GSH 5.226 9.175 14.404 9.549 14.36 9.276 14.473 10.173 6.614 1.296 7.007 9.909
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suitable framework for designing a compartmental
BAL device that can perform all essential liver-specific
functions. This BAL device could have several indi-
vidual bioreactor modules interconnected in series and
each individual bioreactor could be designed based on
the various combinations of liver-specific Pareto-opti-
mal solutions. The idea here will be to obtain an
optimal BAL system that can exhibit very high and
stable levels of key liver-specific functions and thus
translate into a proportional reduction of required cell
mass and total perfusion volume of the bioreactor re-
quired for a given processing capacity. The six com-
binations of liver-specific functions for both
gluconeogenic hepatocytes and glycolytic hepatocytes
were analyzed to obtain a global Pareto-optimal
solution with respect to each liver-specific function in
BAL assembly. Table 7 shows the flux values for these
solutions at few representative Pareto-optimal solu-
tions A, B, C, D, E, and F for both gluconeogenic and
glycolytic hepatocytes of Figs. 4 and 6. Based on the
results obtained, to design a BAL assembly system that
provides higher liver-specific functions in gluconeo-
genic mode, one option could be to operate five
different bioreactors in series at H, G, F, E, and D
points, respectively from Fig. 4. If the five reactors are
operated at these points then the total fluxes can be
calculated by summing up the individual fluxes at these
points. For albumin, urea, glutathione, and NADPH
synthesis these values are 0.281, 107.4, 58.31, and 8.67,
respectively. On the other hand, if the reactor assembly
is just operated at the equal preference point of E then
the total fluxes of albumin, urea, glutathione and
NADPH synthesis will be 0.08, 98.76, 72.1, and 14.93,
respectively. This indicates that the variable operating
condition BAL will produce overall higher albumin
and urea synthesis compared to the case where
assembly is just operated at point E condition. It is to
be noted that glutathione and NADPH synthesis in
variable operating condition reactor is lower than that
if assembly is operated at point E alone. This could be
tolerable because of higher priority to attain high-
albumin and -urea synthesis. However, if there is a
situation where there is a higher demand of ATP (be-
cause of stress and mitochondrial dysfunction) BAL
system for gluconeogenic mode could be designed for
H, G, J, K, and L points, resepectively from Fig. 4. In
glycolytic mode of BAL operation the preferred com-
bination of reactor operations could be H, G, C, D,
and F points, resepectively from Fig. 6. If the five bi-
oreactors are operated at these points then the total
fluxes of albumin, urea, glutathione, and NADPH
synthesis are 0.283, 93.48, 57.88, and 15.13, respec-
tively. On the other hand, if the reactor assembly is just
operated at the equal preference point of C then the
total fluxes of albumin, urea, glutathione, and

NADPH synthesis are 0.06, 72.21, 72.02, and 10.32,
respectively. As seen earlier for gluconeogenic he-
patocytes, we see also in glycolytic hepatocytes that the
variable operating condition BAL will produce in
overall higher albumin, urea, and NADPH synthesis
compared to the case where assembly is operated at
point C condition. Again, if there is a situation
demanding higher energy production BAL system for
glycolytic mode could be H, G, I, K, and L point,
respectively from Fig. 6.

The NCEFBA platform is a useful tool for opti-
mality analysis of large-scale metabolic networks that
are bound to possess multi-objective Pareto-optimal
solutions. This technique enables the systematic iden-
tification of tradeoff situations between various meta-
bolic objectives that characterize a particular cellular
phenotype. The addition of FBA to EBA constraints
ensures that thermodynamically feasible solutions are
obtained. Furthermore, experimental flux data can be
easily incorporated into the analysis, which further
reduces the feasible space of fluxes. Although the
NCEFBA approach described here was applied to the
specific case of hepatocellular metabolism, it can be
readily used on any large-scale metabolic network. It is
noteworthy that as part of the future work, the optimal
fluxes obtained through multi-bojective optimization
are currently being experimentally investigated by
using hormonal supplements, inducers, and transfec-
tion of primary heptocytes in our laboratory. Impor-
tantly, since the presented hepatic metabolic network
model has reasonable predictability for both whole
organ (liver) and in vitro hepatic systems it can be
readily applied to BAL systems.

In conclusion, this study highlights how Pareto-
optimal solutions may contribute to operating BAL
devices, alter the metabolic states of hepatocytes,
achieve the desired range of objectives and has rele-
vance for understanding the impact of environmental
stress, inducers, hormones, and supplements on cellular
metabolism. The important contribution of the paper is
that it presents a strategy for the coupling of Normal-
ized Constraint multi-objective method with EBA to
obtain ‘‘true optimal solutions’’ throughout the feasible
space. The simple method like ‘‘weighted sum’’ fails to
capture the points that are in the concave part of the
Pareto frontier. However, using the presented approach
it is possible to capture every Pareto point given the
generic morphology of an objective function.
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