LAPORAN PRAKTIKUM

METABOLISME DAN SPEKTROFOTOMETRI

NAMA PRAKTIKAN : Ramadhan Bestari

Melviana Lubis

GRUP PRAKTIKAN : Grup Pagi (08.00-11.00)

KELOMPOK : 1

HARI/TGL. PRAKTIKUM: Kamis,31 Oktober 2013

I. TUJUAN PRAKTIKUM

Agar praktikan mampu:

1. Melakukan pengenceran doubling dan decimal dilution dengan benar

- 2. Memahami prinsip dasar spektrofotometri
- 3. Melakukan pengambilan dan pengukuran kadar glukosa, trigliserida dan urea darah
- 4. Menggunakan alat sentrifuge untuk mendapat plasma
- 5. Menggunakan alat vortex untuk proses pengenceran
- 6. Menggunakan alat spektrofotometer dengan benar untuk mendapat nilai serapan
- 7. Membuat dan menginterpretasi grafik kalibrasi
- 8. Membandingkan hasil pengukuran/mengkalibrasi antara pengukuran hasil pengenceran dan pengukuran hasil serapan sprektrofotometri
- 9. Membuktikan hukum Beer Lambert

II. HASIL DAN PEMBAHASAN

Larutan stok urea 10 ml pada kadar 10g/l atau 1000mg/dl. Jumlah urea yang dibutuhkan = $10 \times 10/1000$ = $0.1 \, g$.

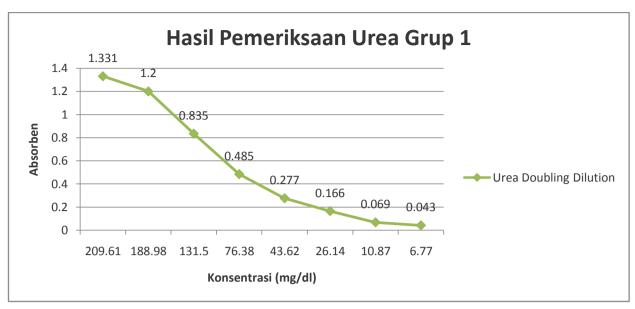
Larutan stok glukosa 10 ml pada kadar 100mM. Jumlah glukosa yang dibutuhkan = $0.1 \times 180 \times 10/1000$ = 0.18 g

Pengenceran Doubling Dilution

Nomor tabung	1	2	3	4	5	6	7	8
Pengenceran	Stok	1:1	1:3	1:7	1:15	1:31	1:63	1:127
Urea dan								
Glukosa								
Faktor	1	2	4	8	16	32	64	128
Cara	Larutan stok	1 ml larutan	1 ml larutan	1 ml larutan	1 ml larutan	1 ml	1 ml	1 ml
	urea/glukosa	1 + 1 ml air	2 + 1 ml air	3 + 1 ml air	4 + 1 ml air	larutan 5 +	larutan 6 +	larutan 7 +
						1 ml air	1 ml air	1 ml air

Pengenceran Decimal Dilution

Nomor Tabung	1	2	3	4	5	6
Faktor	1	3	10	30	100	300
Cara	Larutan stok	0,67 ml lar. 1 +	0,2 ml lar. 1 +	0,2 ml lar. 2 +	0,2 ml lar. 3 +	0,2 ml lar. 4 +
	urea/glukosa	1,33 ml air	1,8 ml air	1,8 ml air	1,8 ml air	1,8 ml air

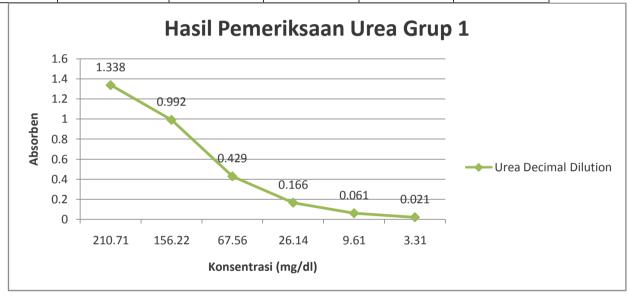

Pemeriksaan Urea, Glukosa & Trigliserida Darah

	GLUKOSA	TRIGLISERIDA	UREA
Vol. Reagensia Kit	1000 ųl reagensia glukosa	1000 yl reagensia R2	1000 yl reagensia A, inkubasi lalu 1000 yl reagensia B
Vol. Sampel/ Standar	10 yl	10 yl	10 yl
Konsentrasi Standar	100 mg/dl	200 mg/dl	40 mg/dl
Periode dan Temperatur Inkubasi	10 min @ 37°C	5 min @ 37°C	5 min @ 25°C
Periksa pada Λ	500 nm	500 nm	500 nm

Tabel 1a : Urea – data untuk kalibrasi doubling dilution

Konsentrasi stok urea 1000 mg/dl

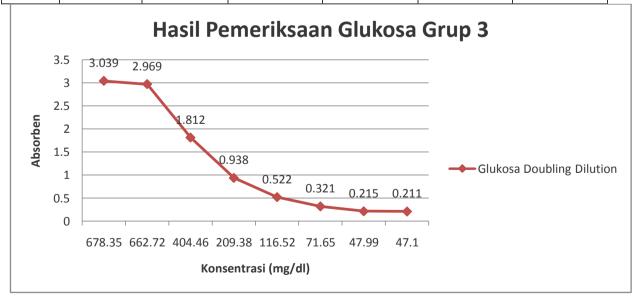
	Konsentrasi	Grup I	Meja 1	Grup Meja 2		
Faktor	Yang Diinginkan	Nilai Serapan	Konsentrasi Yang Didapat	Nilai Serapan	Konsentrasi Yang Didapat	
1	1000 mg/dl	1.331	209.61 mg/dl	6	944.88 mg/dl	
2	500 mg/dl	1.2	188.98 mg/dl	3.165	498.43 mg/dl	
4	250 mg/dl	0.835	131.5 mg/dl	0.352	55.43 mg/dl	
8	125 mg/dl	0.485	76.38 mg/dl	0.764	120.31 mg/dl	
16	62.5 mg/dl	0.277	43.62 mg/dl	0.354	55.75 mg/dl	
32	31.25 mg/dl	0.166	26.14 mg/dl	0.222	34.96 mg/dl	
64	15.63 mg/dl	0.069	10.87 mg/dl	0.118	18.58 mg/dl	
128	7.81 mg/dl	0.043	6.77 mg/dl	0.078	12.28 mg/dl	
Blanko	0	0	0	0	0	
Sampel	40 mg/dl	0.254	40 mg/dl	0.254	40 mg/dl	

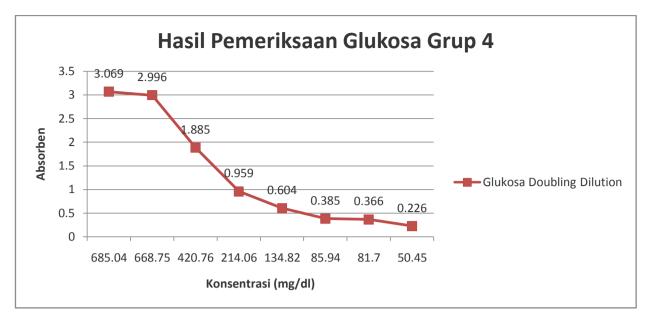


- 1. Dari grafik di atas dapat dilihat bahwa larutan stok urea yang dibuat tidak ada yang benar-benar mencapai konsentrasi yang diinginkan, yang paling mendekati konsentrasi yang diinginkan (1000mg/dl) adalah larutan stok urea dari grup 2 yaitu 944.88 mg/dl dibandingkan dengan larutan stok urea dari grup 1 yaitu 209.61 mg/dl.
- 2. Dari grafik di atas dapat dilihat bahwa pengenceran yang dilakukan oleh grup 1 lebih baik dibandingkan dengan pengenceran yang dilakukan oleh grup 2 di mana terlihat pada grafik yang melandai pada grup 1, sedangkan pada grup 2 terlihat adanya kesalahan pada pengenceran faktor 2 menjadi faktor 4 di mana nilal absorben yang didapat pada faktor 4 malah lebih kecil dari nilai absorben pengenceran faktor 8.
- 3. Setelah dilakukan pemeriksaan menggunakan spektrofotometri ternyata tidak ada satupun larutan yang konsentrasinya sesuai dengan konsentrasi yang seharusnya.

Tabel 1b : Urea – data untuk kalibrasi decimal dilution Konsentrasi stok urea 1000 mg/dl

	Konsentrasi	Grup I	Meja 1	Grup Meja 2		
Faktor	Yang Diinginkan	Nilai Serapan Konsentrasi Yang Didapat		Nilai Serapan	Konsentrasi Yang Didapat	
1	1000 mg/dl	1.338	210.71 mg/dl	6	944.88 mg/dl	
3	335 mg/dl	0.992	156.22 mg/dl	3.286	517.48 mg/dl	
10	100 mg/dl	0.429	67.56 mg/dl	0.88	138.58 mg/dl	
30	33.5 mg/dl	0.166	26.14 mg/dl	0.367	57.8 mg/dl	
100	10 mg/dl	0.061	9.61 mg/dl	0.092	14.49 mg/dl	
300	3.35 mg/dl	0.021	3.31 mg/dl	0.152	23.94 mg/dl	
Blanko	0	0	0	0	0	
Sampel	40 mg/dl	0.254	40 mg/dl	0.254	40 mg/dl	

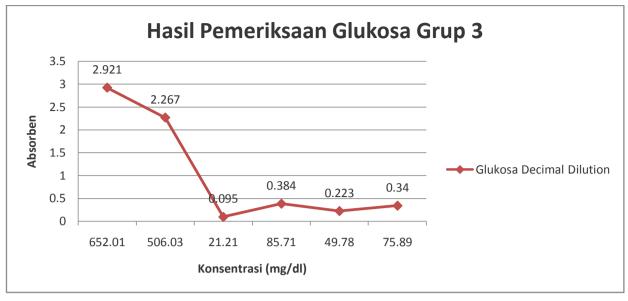

1. Dari grafik di atas dapat dilihat bahwa larutan stok urea yang dibuat tidak ada yang benar-benar mencapai konsentrasi yang diinginkan, yang paling mendekati konsentrasi yang diinginkan (1000mg/dl) adalah larutan stok urea dari grup 2 yaitu 944.88 mg/dl dibandingkan dengan larutan stok urea dari grup 1 yaitu 210.71 mg/dl, tetapi di sini terlihat bahwa larutan stok urea yang dibuat oleh grup 2 lebih

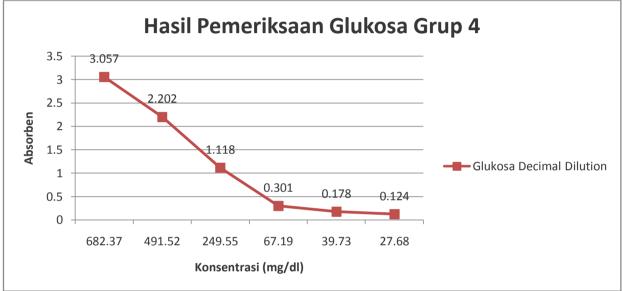

konsisten di mana nilai absorben larutan stok urea untuk decimal delution memiliki nilai yang sama dengan larutan stok ura doubling dilution.

- 2. Dari grafik di atas dapat dilihat bahwa pengenceran yang dilakukan oleh grup 1 lebih baik dibandingkan dengan pengenceran yang dilakukan oleh grup 2 di mana terlihat pada grafik yang melandai pada grup 1, sedangkan pada grup 2 terlihat adanya sedikit kesalahan pada pengenceran faktor 100 di mana nilai absorben pada pengenceran faktor 100 yang didapat malah lebih kecil dari nilai absorben pengenceran faktor 300.
- 3. Setelah dilakukan pemeriksaan menggunakan spektrofotometri ternyata tidak ada satupun larutan yang konsentrasinya sesuai dengan konsentrasi yang seharusnya.

Tabel 2a : Glukosa – data untuk kalibrasi doubling dilution Konsentrasi stok glukosa 100mM = 1800 mg/dl

	Konsentrasi		Grup I	Meja 3	Grup Meja 4		
Faktor		Yang Diinginkan		Konsentrasi Yang Didapat	Nilai Serapan	Konsentrasi Yang Didapat	
1	100.00 mM	1800 mg/dl	3.039	678.35 mg/dl	3.069	685.04 mg/dl	
2	50.00 mM	900 mg/dl	2.969	662.72 mg/dl	2.996	668.75 mg/dl	
4	25.00 mM	450 mg/dl	1.812	404.46 mg/dl	1.885	420.76 mg/dl	
8	12.50 mM	225 mg/dl	0.938	209.38 mg/dl	0.959	214.06 mg/dl	
16	6.25 mM	112.5 mg/dl	0.522	116.52 mg/dl	0.604	134.82 mg/dl	
32	3.13 mM	56.25 mg/dl	0.321	71.65 mg/dl	0.385	85.94 mg/dl	
64	1.56 mM	28.13 mg/dl	0.215	47.99 mg/dl	0.366	81.7 mg/dl	
128	0.78 mM	14.06 mg/dl	0.211	47.1 mg/dl	0.226	50.45 mg/dl	
Blanko	0	0	0	0	0	0	
Sampel	100 mg/dl	100 mg/dl	0.448	100 mg/dl	0.448	100 mg/dl	



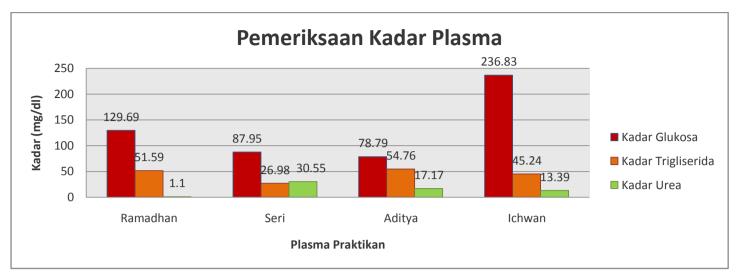


- 1. Dari grafik di atas dapat dilihat bahwa larutan stok glukosa yang dibuat tidak ada yang benar-benar mencapai konsentrasi yang diinginkan (1800mg/dl)baik larutan stok glukosa dari grup 3 yaitu 678.35 mg/dl maupun dengan larutan stok glukosa dari grup 4 yaitu 685.04 mg/dl.
- 2. Dari grafik di atas dapat dilihat bahwa pengenceran yang dilakukan oleh grup 3 hampir sama dibandingkan dengan pengenceran yang dilakukan oleh grup 4 di mana terlihat pada grafik yang melandai baik pada grup 3 maupun pada grup 4, walaupun tidak ada satupun pengenceran yang benarbenar sesuai dengan faktor pengenceran yang seharusnya.
- 3. Setelah dilakukan pemeriksaan menggunakan spektrofotometri ternyata tidak ada satupun larutan yang konsentrasinya sesuai dengan konsentrasi yang seharusnya.

Tabel 2b : Glukosa – data untuk kalibrasi decimal dilution Konsentrasi stok glukosa 100 mM = 1800 mg/dl

			Grup I	Meja 3	Grup Meja 4		
Faktor	Konsentrasi Yang Diinginkan		Nilai Serapan	Konsentrasi Yang Didapat	Nilai Serapan	Konsentrasi Yang Didapat	
1	100 mM	1800 mg/dl	2.921	652.01 mg/dl	3.057	682.37 mg/dl	
3	33.5 mM	603 mg/dl	2.267	506.03 mg/dl	2.202	491.52 mg/dl	
10	10 mM	180 mg/dl	0.095	21.21 mg/dl	1.118	249.55 mg/dl	
30	3.35 mM	60.3 mg/dl	0.384	85.71 mg/dl	0.301	67.19 mg/dl	
100	1 mM	18 mg/dl	0.223	49.78 mg/dl	0.178	39.73 mg/dl	
300	0.335 mM	6.03 mg/dl	0.34	75.89 mg/dl	0.124	27.68 mg/dl	
Blanko	0	0	0	0	0	0	
Sampel	100 mg/dl	100 mg/dl	0.448	100 mg/dl	0.448	100 mg/dl	

- 1. Dari grafik di atas dapat dilihat bahwa larutan stok glukosa yang dibuat tidak ada yang benar-benar mencapai konsentrasi yang diinginkan (1800mg/dl) baik larutan stok glukosa dari grup 3 yaitu 652.01 mg/dl maupun dengan larutan stok glukosa dari grup 4 yaitu 682.37 mg/dl, dan juga terlihat bahwa larutan stok glukosa yang dibuat baik oleh grup 3 maupun grup 4 tidak ada yang konsisten di mana nilai absorben larutan stok untuk decimal delution tidak memiliki nilai yang sama dengan larutan stok doubling dilution.
- 2. Dari grafik di atas dapat dilihat bahwa pengenceran yang dilakukan oleh grup 4 lebih baik dibandingkan dengan pengenceran yang dilakukan oleh grup 3 di mana terlihat pada grafik yang melandai pada grup 4, sedangkan pada grup 3 terlihat adanya sedikit kesalahan pada pengenceran faktor 10 di mana nilai absorben pada pengenceran faktor 10 yang didapat malah lebih kecil dari nilai absorben pengenceran faktor 30, bahkan lebih kecil dari absorben pengenceran faktor 100 dan faktor 300, dan dapat dilihat juga kesalahan pengenceran pada faktor 100 di mana nilai absorben pada pengenceran faktor 100 yang didapat malah lebih kecil dari nilai absorben pengenceran faktor 30 maupun faktor 300.
- 3. Setelah dilakukan pemeriksaan menggunakan spektrofotometri ternyata tidak ada satupun larutan yang konsentrasinya sesuai dengan konsentrasi yang seharusnya.


Tabel 3 : Konsentrasi glukosa dan urea yang dibaca pada grafik 1a s/d 2b serta yang dihitung melalui rumus kit

	Absorb	Absorben Urea		Konsentrasi Urea		Absorben Glukosa		ntrasi
	Rama	Seri			Aditya	Ichwa	Aditya	Ichwa
Serapan sampel	0.007	0.194	dhan		0.353	n 1.061		n
Dari grafik 1a/2a	1.331	6	5.26 mg/dl	32.33 mg/dl	3.039	3.069	209.08 mg/dl	622.29 mg/dl
Dari grafik 1b/2b	1.338	6	5.23 mg/dl	32.33 mg/dl	2.921	3.057	217.53 mg/dl	624.73 mg/dl
Dari rumus kit	0.245	0.254	1.1 mg/dl	30.55 mg/dl	0.448	0.448	78.79 mg/dl	236.83 mg/dl

Dari tabel di atas dapat dilihat bahwa jika kita menggunakan nilai absorben dari grafik 1a/2a maupun dari grafik 1b/2b sebagai absorben larutan standar maka akan didapatkan hasil yang jauh berbeda bila dibandingkan jika kita menggunakan larutan standar dengan rumus kit, sebab jika kita menggunakan larutan dari grafik 1a/2a maupun 1b/2b sebagai larutan standar belum tentu larutan dari grafik 1a/2a maupun 1b/2b tersebut sesuai dengan konsentrasi awal yang diinginkan, sedangkan menggunakan larutan standar dengan rumus kit maka akan didapatkan larutan sampel sebagai larutan standar dengan konsentrasi yang sesuai dengan tertera pada blangko rumus kit di mana tentu hasilnya akan lebih akurat.

Tabel 4 Hasil pemeriksaan glukosa, trigliserida, dan urea plasma mahasiswa

Detil Mahasiswa (berapa lama sejak makan, rata-rata	Glul	kosa	Trigliserida		Urea	
apa yang dimakan, jenis kelamin, umur)	Α	Kadar	Α	Kadar	Α	Kadar
Ramadhan (laki-laki) 25 tahun pukul 07.45 WIB (Nasi putih 2 piring + soto ayam + 1 gelas teh manis hangat)	0.581	129.69 mg/dl	0.065	51.59 mg/dl	0.007	1.1 mg/dl
2. Seri (perempuan) 37 tahun pukul 07.15 WIB (Nasi putih + ikan 1 ekor + 1 gelas bandrek susu)	0.394	87.95 mg/dl	0.034	26.98 mg/dl	0.194	30.55 mg/dl
3. Aditya (laki-laki) 30 tahun pukul 07.30 WIB (Nasi putih + ikan 1 ekor +kue 2 buah + 1 gelas teh manis dingin)	0.353	78.79 mg/dl	0.069	54.76 mg/dl	0.109	17.17 mg/dl
4. Ichwan (laki-laki) 26 tahun pukul 07.30 WIB (Roti abon 2 buah)	1.061	236.83 mg/dl	0.057	45.24 mg/dl	0.085	13.39 mg/dl
5. Standar	0.448	100 mg/dl	0.252	200 mg/dl	0.254	40 mg/dl

Dari grafik di atas dapat dilihat bahwa pola makan masing-masing orang yang berbeda dapat menyebabkan kadar glukosa, trigliserida, dan urea dalam darah yang bervariasi antar tiap-tiap orang.

III. KESIMPULAN

- 1. Spektrofotometri adalah alat yang dapat digunakan untuk mengukur konsentrasi zat terlarut yang terdapat pada suatu larutan yang mengalami perubahan warna setelah dicampur dengan menggunakan reagensia dengan mengukur jumlah cahaya yang melewati larutan tersebut.
- 2. Dari grafik-grafik di atas seluruhnya dapat dilihat bahwa adanya kesesuaian **hukum Bert-Lambert** di mana kita dapat menghitung konsentrasi larutan yang sebenarnya dari larutan yang telah kita buat yaitu dengan membandingkannya dengan larutan standar (larutan sampel yang telah disediakan).
- 3. Dari grafik-grafik di atas seluruhnya dapat dilihat bahwa tidak ada satupun larutan yang dibuat sesuai dengan konsentrasi larutan yang diinginkan. Hal ini dapat terjadi oleh karena berbagai hal, seperti pencampuran zat terlarut dengan pelarut dalam pembuatan larutan stok yang kurang homogen, pengambilan berat zat dan volume jumlah pelarut yang kurang tepat, pengambilan volume larutan dari tabung reaksi dengan pipet otomatik yang kurang dari 10µl, larutan yang tidak tercampur homogen dengan reagensia yang tersedia maupun karena larutan yang menempel di dinding-dinding kuvet, waktu maupun suhu inkubasi yang kurang sesuai, reagensia yang telah kadaluarsa, dan hal-hal lainnya.
- 4. Pemeriksaan kadar glukosa, trigliserida, dan urea dari plasma masing-masing praktikan dapat dilihat adanya variasi hasil pengukuran. Hal ini dikarenakan adanya variasi jenis makanan yang dimakan, umur yang berbeda, jenis kelamin yang berbeda, waktu makan yang berbeda, maupun faktor-faktor lainnya seperti menderita penyakit-penyakit tertentu sehingga membuat adanya variasi hasil pengukuran.

IV. SARAN

- 1. Penambahan jumlah alat-alat untuk efisiensi kerja
- 2. Pada masing-masing meja kerja, pengambilan reagen glukosa, urea dan trigliserida disediakan pipet tersendiri agar tidak ada kontaminasi
- Menu makanan mahasiswa praktikan perlu dibuat standar dan atau beda perlakuan, misalnya kelompok 1 dirancang tinggi karbohidrat, kelompok 2 tinggi protein, kelompok lain tinggi lemak, sehingga dapat dilihat metabolisme post prandial.