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( )A no®el generalized run-to-run control GR2R control strategy is presented for the
optimization and control of nonlinear preparati®e chromatographic processes. The

( )GR2R approach synergistically employs a hybrid both physical and empirical model to
control chromatographic processes in the presence of sporadic and autocorrelated dis-
turbances. First, parameters of the physical model through experiments are determined,
and then the physical model is used to estimate initial parameters of the nonlinear

( )empirical model Hammerstein using orthogonal forward regression. Parameters of the
nonlinear empirical model are updated at the end of each run using a nonlinear recur-
si®e parameter estimation method. The updated empirical model is then used in the

( )control algorithm model predicti®e control to estimate operating conditions for the
next batch. Processes operating under fixed optimal conditions are compared with those
operating with GR2R control for both gradient and displacement chromatography. The

(GR2R outperforms the fixed conditions in the presence of ®arious disturbances such as
)bed capacity, column efficiency, and feed load and is an effecti®e strategy for the opti-

mization and control of complex chromatographic processes.

Introduction

Ž .Although preparative ion-exchange chromatography IEC
is widely employed for protein purification, the choice of op-

Žerating conditions has remained largely empirical Felinger
.and Guiochon, 1994, 1996a,b; Luo and Hsu, 1997 , resulting

in a suboptimal performance of these separation systems.
Concurrent advances in both the theory of protein nonlinear
IEC and the run-to-run control algorithm sets the stage for
the development of optimal and robust nonlinear gradient
and displacement purification processes with minimal experi-
ments. Chromatographic processes also have the lack of
real-time data directly related to the product quality or pro-
ductivity, thus making R2R control a viable strategy.

In this article we present a novel hybrid approach, general-
Ž .ized run-to-run control GR2R for the optimization and con-

trol of chromatographic processes. This approach synergisti-
Žcally uses a hybrid model both an empirical and a physical

. Ž .model for optimization Siouffi and Phan-Tan-Luu, 2000
and control. The motivation for using both physical and em-
pirical models is to complement the knowledge of physics
from the physical model with the simplicity and low computa-
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tional cost of the empirical model. The approach is based on
the realization that the fixed parameter model based ap-
proaches will not give an optimal performance due to batch-
to-batch variability and disturbances. The parameters of both
the empirical and physical model can be updated in the
approach to drive the models close to the actual process.

Ž .Run-to-Run R2R control refers to a class of statistical pro-
Ž .cessrquality control SPCrSQC techniques used to improve

the operation of batch processes. R2R handles batch-to-batch
variations and gives a reasonably good performance com-
pared to the cases where control algorithms do not learn from
batch-to-batch. There are several approaches for R2R con-
trol existing in the current literature. The R2R controller has
two modes of operation: optimization and control. Optimiza-
tion may be repeated periodically, if it is thought that addi-
tional opportunity for improvement exists or if the process
has changed drastically. Once the process is optimized, the
R2R maintains the process at the optimum conditions in the

Žpresence of disturbances fluctuations in operating parame-
.ters from batch-to-batch .

The most common R2R approach is the Exponential
Ž .Weighted Moving Average EWMA based approach. Sachs
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Ž . Žet al. 1995 use EWMA for small drifts from the target de-
.sired quality attribute and call it an EWMA ‘‘Gradual Mode’’

Ž .R2R controller GM . This approach uses a linear model of
the process and the controller updates the model by weight-
ing the past and the present batch data. This approach is not
appropriate for processes that have strong autocorrelation
between batches, and processes with physical or operational
constraints on the inputs or outputs.

Ž .Hankinson et al. 1997 proposed a Knowledge-based Inter-
acti®e Run to Run controller, which generates nonlinear re-
sponse surfaces from experimental data using neural net-

Ž .works. Ning et al. 1996 have shown that this gives a better
performance for a linear process than EWMA, but may fail
to satisfactorily control nonlinear processes. A Optimizing

Ž .Adapti®e Quality Controller OAQC presented by Castillo and
Ž .Yeh 1998 tries to keep adequate control even if the relation

between the input and output parameters is severely nonlin-
ear. The OAQC combines the model optimization step with

Ž .the control step by using recursive least squares RLS to es-
timate the parameters of a Hammerstein model on-line and
then optimizing the objective function to obtain the best con-
trol action. It is restricted to systems having second-order
nonlinearities occurring only in the input. Golden and Ydstie
Ž .1989 proposed adaptive extremum control using approxi-
mate process models. The objective of an adaptive extremum
control is to locate the steady-state optimum of a process and
then continuously keep the process operating at its optimum
despite inaccuracies in the model, drifts due to unmeasured
process disturbances, and slow dynamical changes that result
from changing parameters. Their strategy has not been ap-
plied to run-to-run control.

While R2R is currently being used extensively in semicon-
ductor processes, a variant of R2R control was applied to

Ž .chromatographic processes as early as 1990. Frey 1990 ap-
plied minimum variance control to preparative chromatogra-
phy for maximizing the yield of a desired component, while
maintaining a required level of product purity in the pres-
ence of measurement error and external disturbances. Fur-
thermore, input-output models utilizing discrete variables
Ž .Frey, 1991 were developed for elution chromatography and
used together with a control theory to investigate the correla-

Žtion between output variables such as yield, purity, and pro-
. Žduction rate and input variables such as cut point locations

.and feed slug size . However, there are several limitations to
this work. The manipulated inputs were limited to cut point
locations and feed size. In addition, the use of linear models
limits the performance of the control strategy, particularly
near an optimum production rate.

Over the past few years, R2R control has received consid-
erable interest from the chemical process control community.
There has been a surge of articles in the application of tradi-

Žtional process control algorithms internal model control and
.model predictive control for batch processes. We can classify

and compare the current approaches based on two distinctive
criterions. The first criterion for comparison deals with the
issue of a modeling approach adopted for the batch process.
Some of the approaches in literature use only a data based

Žempirical model Pan and Lee, 2000; Adivikolanu and
Zafiriou, 2000; Sreenivasan et al., 2001; Gillet et al., 2001;

.Dorsey and Lee, 2000; Pan and Lee, 2000 . On the contrary,
some of the other approaches deal only with the fundamental

Ž .models Gattu et al., 1999 . The approach presented in our
article is the only one which deals with the implementation of

Žnonlinear predictive control using hybrid models both empir-
.ical and fundamental for the control of batch processes. We

Ž .would like to emphasize that, although Crowley et al. 2001
presented a hybrid modeling approach for batch-to-batch op-
timization of particle-size distributions in semi-batch emul-
sion polymerization, they have not implemented any control
strategy. A second measure for comparison is based on the
use of a linear or nonlinear model andror controller design.

ŽMost approaches for example, Adivikolanu and Zafiriou,
.2000; Sreenivasan et al., 2001; Gillet et al., 2001 use a linear

model andror controller design. The approach presented by
Ž .Pan and Lee 2000 could be extended to nonlinear models;

however, their approach employs a linear recursive predictor.
The GR2R approach presented makes use of the nonlinear
recursive prediction error method developed by Hernandez

Ž .and Arkun 1993 for continuous processes. We have been
the first to apply a nonlinear recursive prediction error for
model updating to a batch process. The use of linear updat-
ing scheme can limit the performance of the extremal control
strategy. As previously described, there is an essential differ-
ence between our GR2R approach and the other R2R con-
trol approaches. These approaches do not deal with the issue

Žof hybrid modeling that is, coupling fundamental knowledge
.of process with the measurement data from the process . This

is because most of the R2R control literature is based on the
processes where fundamental or first principles model are not
available or are very difficult to obtain. In addition, large
numbers of off-line experiments are required for the genera-
tion of linear or nonlinear empirical model from experi-
ments. The generation of nonlinear empirical model off-line
Ž .through experiments for the chromatographic processes will

Ž .entail a large number of preparative large-scale chromato-
graphic experiments. However, this will not be feasible for
the pharmaceutical industry, which employs chromatography
for protein separations because these experiments can be ex-
tremely expensive. Hence, any way of reducing the number is
welcome.

Ž .Generalized run-to-run control GR2R inherits the advan-
tages of present run-to-run control formulations and over-
comes the limitations and disadvantages of classical R2R. The
motivation for the GR2R control is in optimizing and con-
trolling at the optimum and making the chromatographic
process insensitive to the effect of varied disturbances and
changes in the operating conditions. Generalized run-to-run

Ž . Žcontrol GR2R synergistically uses both physical first princi-
. Ž .ples and nonlinear empirical input-output models for opti-

mization. Initial parameter identification for the physical and
empirical model is carried out using linear gradient, unre-
tained and a few preparative scale experiments. Parameters
of the empirical and physical model can be updated with the
data obtained from subsequent runs. However, we only up-
date in this article the parameters of the empirical model.
The empirical model is then used with the proposed control
algorithm to obtain optimal operating conditions in the pres-
ence of measured and unmeasured disturbances.

The theory is provided for physical and empirical model-
ing, the detailed procedure is described for Generalized Run
to Run Control, results and discussion are presented, and
conclusions and suggestions are presented for future work.
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Theory
Physical model

In this article, a solid film linear dri®ing force model is em-
Ž .ployed in concert with the steric mass action SMA isotherm

and appropriate Danckwert’s boundary conditions to de-
scribe gradient and displacement separations. The solid film

Žlinear driving force model Glueckauf and Coates, 1947;
.Phillips et al., 1988; Guiochon et al., 1994 falls under the

broader category of transport-dispersive models. In this
model, a linear driving force approximation describes the ef-
fects of mass transfer

� C 1y� � Q � C � 2Ci t i i iq qu sD 1Ž .ai 2� t � � t � x � xt

� Qi equilsk Q yQ 2Ž .Ž .m i ii� t

where Qequil is the equilibrium stationary phase concentra-i
tion of the ith component. In this model, D accounts fora
axial dispersion effects and k represents a lumped massm
transport coefficient that accounts for film, pore, andror sur-

Žface diffusion effects depending on the relative importance
.of these phenomena .

Ž .The SMA formalism Brooks and Cramer, 1992 is used to
describe multicomponent protein-salt equilibrium in ion-
exchange systems. The stoichiometric exchange of protein and
salt can be represented as

C q� Q mQ q� C 3Ž .i i 1 i i 1

where � is the characteristic charge of protein, C and Qi i i
are the mobile and stationary phase concentration, respec-
tively, and Q is the number of sites on the stationary phase1
available for exchange with the protein. The equilibrium con-
stant K is defined assmai

� iQ Ci 1
K ssmai ž / ž /C Qi 1

Ion-exchange surface must maintain the electroneutrality
condition. The electroneutrality condition is described by

N

Q s�y � q� Q 4Ž . Ž .Ý1 i i i
is 2

The finite difference technique is employed to solve Eqs. 1�4.
As the SMA isotherm is implicit, a Newton-Raphson tech-
nique is used to solve for the equilibrium at each point. The
temporal terms are discretized using forward differences,
while the convection and diffusion terms are discretized us-
ing backward and central differences, respectively.

Empirical model
Input-output data can be used to develop an empirical

model that may approximate the physical process in the given
data range. In the GR2R approach, an empirical model is

generated by making parametric changes in the manipulated
inputs of the physical model. The use of the physical model
for empirical model generation eliminates the need for many
preparative experiments and, thus, makes the identification
of model structure less cumbersome and more economical.
Parametric simulations are used to generate n-dimensional
response data, which relate the production rate, yield, and

Žpurity to the other parameters of the system such as feed
.load, flow rate, salt gradient, and displacer concentration .

Ž .Billings 1980 gives a survey of constructing a nonlinear
model from input-output measurements.

Most applications of R2R have been limited to the use of
linear models. These approaches have been used successfully
on the processes where the ‘‘output,’’ which is a product
property or quality variable, is a monotonic function of an
‘‘input’’ variable. However, for extremum control, the desired

Ž .variable for example, productivity in chromatography ex-
hibits a maximum and it is necessary to operate as close to
that maximum as possible. If linear models are used, then the
desired output may exhibit oscillatory response close to the
optimum, and optimum may never be achieved. Hence, a
nonlinear model representation is needed for systems that
have nonmonotonic relationships between inputs and out-
puts.

Ž .Various nonlinear empirical models share the form y k s
w Ž . xF � k ,� , where F is a parameterization function that can

be expanded using basis functions, and maps set of regressors
� to the output y with the parameters � . Different model
types can be obtained by using different sets of basis func-
tions and regressors. The regressor set � may include past
inputs, past outputs, or their combination, thereby yielding
different nonlinear models. There are various empirical non-
linear model structures for the representation of nonlinear
systems. The theory for identification of nonlinear systems

Žbased on the Hammerstein model the model studied in this
.article is well established. In this article, nonlinear effects

are modeled as an input dependent nonlinearity. The Ham-
merstein model is a simplified form obtained from a more
general NARMAX form, and can be represented as

y k s f y ky1 ,... y kyn , u ky1 ,...,u kyn ,Ž . Ž . Ž . Ž .Ž .y u

e ky1 ...e kyn q e k 5Ž . Ž . Ž .Ž .e

Ž .where f . is a nonlinear function. System outputs, inputs,
Ž . Ž . Ž .and noise are denoted by y k , u k and e k , respectively;

n , n , and n are the maximum lags in the output, input andy u e
Ž .noise, respectively; e k is assumed to be a white noise se-

Žquence and k denotes the batch index it is to be noted that,
.in the real-time control literature, k denotes the sample time .

Ž .In the empirical model, outputs production rate and yield
are nonlinearly related to current and previous batch inputs
Žgradient slope and flow rate for gradient chromatography;
flow rate and displacer concentration for displacement chro-

.matography , as shown in Figure 1.
The Hammerstein model is generated by orthogonal least

Ž .squares OLS using the modified Gram-Schmidt method
Ž .Chen et al., 1990 . The advantage of OLS is that structure
determination is performed simultaneously with parameter

Ž .estimation. Expanding f . as a polynomial of degree L givesi i
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Figure 1. Hammerstein model.

the representation

n
i iy k qa y ky1 q...a y kyn s� q � u kŽ . Ž . Ž . Ž .Ýi 1 i n i 0 i i11

i s11

n n n
i i iq � � u k u k ...q � ...Ž . Ž .Ý Ý Ýi i i1 i2 i1 2 1

i s1 i s i i s11 2 1 1

n
i� u k ...u k q e k , is1, . . . m 6Ž . Ž . Ž . Ž .Ý i i1 i L iL

i s iL Ly1

where k denotes the present batch index. The coefficents ai
and � are derived by the orthogonal least-squares proce-i j
dure.

In compact notation, Eq. 6 is written as

y k u kŽ . Ž .1 1

. .
y k s u k sŽ . Ž .. .

. .
y k u kŽ . Ž .m r

ni

y k s � u k q e k , is1,...m 7Ž . Ž . Ž . Ž .Ýi i j i j i
js1

Li

n s n , n s1, nÝi i j i0 i j
js 0

m r
i in n q n q jy1Ý Ýi jy1 yk uk

ks1 ks1s ,
j

js1,... L

The Hammerstein model is then cast into a linear-regres-
sion form as

M

z k s p k � q	 k , ks1,... N 8Ž . Ž . Ž . Ž .Ý i i
is1

Ž . Ž . Ž .where z k is a dependent variable, p k are regressors, 	 ki
is the modeling error, and � are unknown parameters. Thei
regressor matrix P is defined as

TT TPs P 1 ... P NŽ . Ž .

Figure 2. Initial parameter identification step for the
generalized run-to-run control strategy.

where N is data length. Equation 8 is written in a general
form as

ZsP
q� 9Ž .

where � is a vector of modeling errors and 
 is a vector of
unknown parameters. Steps for the Modified Gram Schmidt
based identification are given in the appendix.

Procedure for Generalized Run to Run Control
ŽThe GR2R uses the physical model lumped transport

.model for iterative optimization and for generation of an
empirical model. For the sake of clarity, GR2R is divided
into two segments, a parameter identification step and ex-
tremum control step. The aim of the first step, parameter
identification, is to estimate the parameters of the physical
and empirical models. The second step, extremum control,
addresses the requirement of maintaining the process at the

Žcurrent optimum conditions andror determining a new opti-
. Žmum when required in the presence of disturbances mea-
.sured and unmeasured .

Preliminary experiments for building models
The first step in the parameter identification step of GR2R,

as shown in Figure 2, is to generate a physical model using
analytical experiments. The procedure for parameter estima-

Ž .tion is described elsewhere Natarajan and Cramer, 2000 .
Ž .Briefly, isotherm parameters K , � first are obtained bysmai i

linear gradient experiments. The axial dispersion coefficient
Ž . Ž .D and pore diffusion coefficient D are then obtainedai pi
by unretained HETP experiments. Finally, the surface diffu-

Ž .sion coefficient D and the steric factor � are obtained bysi i
retained HETP experiments. These experiments provide us
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with an initial set of parameters for the physical model. How-
ever, the parameters of the physical model estimated in GR2R
can be updated at the end of each run.

Iterati©e optimization using physical model
We then employ the physical model with iterative opti-

Žmization techniques Gallant et al., 1996; Natarajan et al.,
.2000 to obtain optimal initial operating conditions.

Objecti®e Function. The maximization of production rate is
defined as the objective function in iterative optimization.

Decision Variables. The decision variables in the iterative
optimization are the salt concentration and flow rate for lin-
ear gradient chromatographic systems. For displacement sys-

Ž .tems, the decision variables are feed load, � Q rC , flowDi Di
rate, and initial salt concentration. The feed loads for the
displacement and gradient simulations were arbitrarily set at
1 and 2 column volumes, respectively, to facilitate the simula-
tions.

ŽConstraints. The constraints are imposed on purity purity
. Žof desired protein G95% , solubility protein concentration

. Ž�5 mM , and yield yield�87% for gradient separation;
.yield �89% for displacement .

For displacement, the first step in iterative optimization is
to start with an initial guess for the flow rate F and � at
their lowest bounds. The next step is to optimize the produc-
tion rate with respect to the salt concentration. If yield con-
straints are not satisfied, then delta is increased. If satisfied,
then flow rate is increased. If the production rate has not
increased because of the last step, the flow rate is decreased.
The next step is to increase the delta until the yield con-
straint is satisfied. This process is done in a loop wise fashion
until the desired tolerances and convergence are achieved.
Iterative optimization provides the optimal initial operating
conditions. An analogous approach is employed for gradient

Ž .systems. Natarajan et al. 2000 show that the results ob-
tained from iterative optimization are comparable to that ob-
tained using the rigorous optimization algorithm feasible se-

Ž .quential quadratic programming FSQP . The computational
time required by iterative optimization was substantially less
than FSQP. Hence, iterative optimization can be effectively
used in GR2R.

In the present work, this approach is employed to establish
an initial guess of operating conditions.

Extremum control step
The approach is based on using the physical model to de-

termine initial optimal operating conditions and the empiri-
cal model for controlling the process at those conditions. This
approach is provided in Figure 3. The first step is to use the
physical model to generate the optimal operating conditions

Žusing iterative optimization. The optimal output production
.rate obtained from the iterative optimization is defined as

the target. The optimal set of inputs is then applied to the
process.

After the completion of a preparative chromatographic run,
the output data is then used in conjunction with the input

Ždata to update the parameters of the empirical model ap-
.pendix . In the ensuing step, the updated nonlinear empirical

model is used in the nonlinear model predictive control for-

Figure 3. GR2R using physical and empirical model.

Ž .mulation indicated as control algorithm in Figure 3 to ob-
tain a new optimal set of inputs. The new operating condi-
tions attempt to maintain the process at the optimal output
in the presence of measured and unmeasured disturbances.
The new operating conditions obtained from the control al-
gorithm are then applied to the process for the next run. The
use of the nonlinear empirical model and nonlinear recursive
parameter estimation and update makes GR2R appropriate
for both linear and nonlinear processes. Moreover, insensi-
tiveness to disturbances in the process is ensured, since the
disturbance structure will be able to handle both measured
and unmeasured disturbances.

Control algorithm
ŽTraditionally, minimum variance control Castillo and Hur-

.witz, 1997; Clarke and Gawthrop, 1975 has been a popular
algorithm for R2R control. In this work we used model pre-

Ž .dictive control MPC . A review of MPC is presented by Gar-
Ž .cia et al. 1989 which can handle constraints explicitly, and is

well suited for multiinput, multioutput systems. A nonlinear
Žmodel predictive control formulation Fruzzetti et al., 1997;

Henson, 1998; Hernandez and Arkun, 1993; Bequette, 1991;
.Sistu et al., 1993 was used to obtain the optimal inputs for

the process. We have modified the MPC problem so that op-
timization is done over future batches instead of time steps.
In the current formulation at the end of each batch, an opti-
mization problem is solved which consists of the minimiza-
tion of an objective function based on output predictions over
a prediction horizon of P future batches. This is carried out by
the selection of manipulated variable moves over a control
horizon of M control moves over M future batches. Although
M moves are optimized, only the first move is implemented.

Ž .After the input u k is implemented, the measurement at the
Ž .end of the batch y kq1 is obtained. A new optimization

problem is then solved, again, over a prediction horizon of P

January 2003 Vol. 49, No. 1 AIChE Journal86



future batches by adjusting M control moves. This approach
is also known as receding horizon control.

The objective function in NPC used to obtain the optimal
input sequence for future batches is

P
T Tmin e kq j 
 e kq jŽ . Ž .Ý p p

Ž . Ž .u k .....u kq Mq1 js1

P
T Tq u kq jy1 � �u kq jy1Ž . Ž .Ý

js1

M
T Tq �u kq jy1 � ��u kq jy1 10Ž . Ž . Ž .Ý

js1

Here, k denotes the batch index and 
 is the weight on the
w Ž . Ž . spŽ .xprediction error e k s y k y y k , and �, � are theˆp

weights on the magnitude of the input u, and the change in
the input �u, respectively. M and P denote the control and
prediction horizon, respectively.

In GR2R, a physical model is used to obtain optimal oper-
spw Ž .x w Ž .xating conditions u k and the desired target y k . The

nonlinear model predictive control is then used to keep the
system at the optimum in presence of measured and unmea-

Ž .sured disturbances Figure 3 .

Nonlinear recursi©e parameter estimation and model
update

In chromatographic processes, it is quite possible that the
Žprocess will suffer aberrations because of changes in feed

coming from upstream processes and external disturbances in
.process itself and, hence, enter the region not previously ob-

served by the model. Processes experiencing these anomalies
will encounter a large process-model mismatch. Hence, it is
required to essentially use a recursive parameter estimation
and model update technique, in which parameters are up-
dated from batch to batch. The recursive parameter estima-

Ž .tion method RPEM developed by Hernandez and Arkun
Ž .1993 is adopted for this work. The parameters of the non-
linear empirical model are then updated using the nonlinear
recursive prediction error method, as described in Appendix.
Briefly, the error in the outputs from the current batch is
used to update the parameters of the nonlinear empirical

Ž .model using estimator gain matrix L k . In RPEM, model
parameters are augmented with the estimator gains.

Results and Discussion
In the current chromatographic applications, a common

desired objective is to keep the production rate near the max-
imum by manipulating a variety of chromatographic parame-

Žters such as for feed load, salt concentration, displacer con-
.centration, and flow rate .

Figure 4 shows both the disturbances that can occur in a
typical chromatographic process, as well as the manipulated
and controlled variables. Disturbances can be either sporadic
or autocorrelated. Sporadic disturbances can occur randomly
and can vary from batch-to-batch, while autocorrelated dis-
turbances tend to have a relationship between batches. As
seen in the figure, sporadic disturbances can include changes

Figure 4. Various variables effecting displacement and
linear gradient based chromatographic pro-
cesses.

in the feed composition, feed load, buffer composition, and
pH. Autocorrelated disturbances in chromatographic pro-
cesses can include changes in bed capacity and column effi-
ciency, which are indicative of column fouling, a major issue
in bioprocessing.

Ž .The controlled variables also known as outputs in this
work will be the production rate and the yield. Production
rate is a measure of the amount of protein purified per unit
time and per unit stationary phase volume. It is a strong
function of the amount of material loaded onto the column.
Production rate is defined as

C V Yf f
PRs 11Ž .

t Vcyc s p

where C denotes feed concentration, V denotes the feedf f
volume, Y denotes the yield, t denotes the cycle time, andcyc
V denotes the stationary phase volume. Yield is calculatedsp
as

t2Cd�H
t1Ys 12Ž .
C tf f

where the cut times t and t are chosen to maximize the1 2
yield at a given purity.

Ž .The manipulated variables also known as inputs in the
Žcurrent work will be the gradient slope and flow rate for

.gradient systems , and initial salt concentration, displacer
Ž .concentration, and flow rate for gradient systems . Con-

straints, which are addressed in this article, are purity, yield,
and solubility limits.

In this article, the transport and kinetic parameters for the
proteins � chymotrypsinogen A and ribonuclease A were ob-

Ž .tained from our previous work Natarajan et al., 2002 , as
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Figure 5. Parametric sensitivity of production rate and yield with respect to feed load and bed capacity, and the
effect of manipulated variables and disturbances on production rate and yield.
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Table 1. Column Parameters and Optimal Operating
Conditions for Displacement Separation

Column: 1.6�10.5 cm
Stationary phase: FF Sepharose SP resin

y1Flow rate: 2.0 mL �min
Particle dia.: 90 �m

Ž .Feed composition: 1:1 0.15 mM each
Displacer conc.: 2.3 mM
Salt conc.: 170.3 mM
Feed load: 1.0 dimensionless column vol.

Table 2. Column Parameters and Optimal Operating
Conditions for Linear Gradient Separation

Column: 0.5�10.5 cm
Stationary phase: FF Sepharose SP resin

y1Flow rate: 0.6 mL min
Particle dia.: 90 �m
Feed composition: 0.2 mM � chymotrypsinogen A

0.4 mM ribonuclease A
Initial salt conc.: 50 mM
Final salt conc.: 1,000 mM
Gradient slope: 12.6 mMrdimensionless volume
Feed load: 2.0 dimensionless column volume

described in Figure 2. In that article, it was demonstrated
that the results obtained from the physical model corre-
sponded well with the experiments. The parameters were then
used to obtain initial optimum operating conditions using the
iterative optimization algorithm. The resulting column pa-
rameters and initial optimum operating conditions are pre-
sented in Tables 1 and 2 for displacement and gradient sepa-
ration, respectively.

In an industrial environment, there will be both measured
Žand unmeasured disturbances. Certain disturbances such as

relative feed concentration and feed volume and buffer
.changes in pH andror salt concentration can be measured

Žby various techniques such as analytical chromatography and
.conductivity meter before they affect the process. Other dis-

turbances, such as bed capacity, will typically not be mea-
sured. The effect of these unmeasured disturbances is mini-
mized in the current approach by having a stochastic compo-
nent in the empirical model.

The effect of some of the disturbances such as feed load,
bed capacity and feed concentration of � chymotrypsinogen
A on the performance of gradient chromatography are illus-
trated in Figure 5. For these simulations, there are two pro-

Ž .teins in the feed ribonuclease A and � chymotrypsinogen A
and � chymotrypsinogen A is the more retained protein and
the designated product. While the production rate is rela-
tively insensitive to bed capacity over this range, it is highly

Ž .sensitive to feed load as shown in Figure 5a . The yield ex-
hibits a nonlinear response to both bed capacity and feed

Ž .load Figure 5b . In addition, as seen in Figures 5c and 5d, a
decrease in the feed concentration of � chymotrypsinogen A,
results in a linear and nonlinear decrease in production rate
and yield, respectively. The effect of the manipulated vari-
ables such as flow rate and gradient slope on production rate
and yield is examined in Figures 5e and 5f. As expected, an
increase in the gradient slope results in an increase in the
production rate and a decrease in the yield. While these
trends are to be expected, the purpose of presenting them
here is to motivate the need for developing nonlinear control
approaches to these complicated systems.

Once the initial parameters for the physical model are de-
termined, the physical model is then used to determine the
parameters of the nonlinear empirical model as described
earlier. The nonlinear empirical model is determined sepa-
rately for gradient and displacement separations. The input
data is selected using a random Gaussian signal and the cor-
responding outputs are determined from the physical model.
Once the empirical model is generated, the model is vali-
dated using input values not employed in the generation of
the model. The measured and predicted output for a repre-
sentative gradient validation data set is shown in Figure 6. As
seen in Figure 6, the nonlinear empirical model has excellent
predictive ability. Similar results were obtained for the vali-
dation set generated from displacement chromatography.
Once the empirical model is generated, it is subsequently em-
ployed in the model predictive control algorithm to obtain a
new set of optimal operating conditions. In the model predic-

Ž . Ž .tive control MPC algorithm, the prediction P and control
Ž .horizons M are chosen as 3 and 1, respectively, for both the

displacement and gradient simulations. The penalty matrices
on inputs and outputs are selected as the identity matrix.

( )Figure 6. Measured vs. predicted output yield and production rate for linear gradient separation for a validation
data.

Ž . Ž .The dotted line is the measured output in Figures 8a and 8b. The dashed Figure 8a and solid line Figure 8b is the predicted output.
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Extremal control results for gradient chromatography
This section compares the performance of a gradient sepa-

ration process operated with a GR2R controller to a process
operating under fixed optimal conditions. We will examine
first the performance of these systems in response to a step
disturbance. At the start of a run, an unmeasured distur-

Ž . Žbance step is imposed in the feed load from 2.0 to 1.9 col-
.umn volumes . In addition, noise is added to the input signals

to represent typical uncertainty in these values under actual
operating conditions. The responses of the process operating
under GR2R controller and fixed optimal conditions are pre-
sented in Figure 7. The process operating under GR2R con-
troller compensates for the disturbance by taking suitable
manipulated actions based on the error between the desired
output variable and the measured output after each run. It
can also be seen that the average production rate for the
process operating with GR2R control is higher than that ob-
tained with the fixed optimal conditions.

We will now compare the performance of the gradient pro-
cess operating with GR2R control to that operated under
fixed operating conditions, in the presence of both the un-

Ž . Ž .measured step feed load and the drift bed capacity distur-
Ž .bances Figure 8 . As seen in the Figure 8a, while the pro-

duction rate continues to increase with the bed capacity for
the process operating under fixed conditions, it remains es-
sentially constant for the GR2R controlled process. The rea-
son for this is shown in Figure 8b, where it can be seen that
the yield in the fixed process tends to continuously decrease,
eventually resulting in a violation of the yield constraint
Ž .87% . Clearly, this is unacceptable in a real manufacturing
setting, where yield constraints in chromatography are con-
sidered as hard constraints due to significant economic incen-
tives for high value biopharmaceuticals. The changes of in-

Ž .puts run-to-run computed by the control algorithm for this
system will be presented in Figures 10c and 10d. These in-
puts are changing in response to both a step change in feed
load at the beginning of the first run, as well as a continual
decrease in bed capacity as described above.

In order to maintain the production rate at the desired
target, while satisfying the constraints, the controller deter-
mined that the gradient slope should continuously decrease
while the flow rate exhibited a minimal increase. As shown in
the sensitivity analysis of Figure 6, the yield is much more
sensitive to bed capacity changes than the production rate.
Clearly, the yield constraint is the driving force in this pro-
cess. Furthermore, as shown in Figure 8, control in this sys-
tem is governed primarily by the gradient slope. This is not
surprising, since, as the ion capacity decreases, the selectivity
in these ion-exchange systems tends to decrease. This in turn
necessitates a decrease in the gradient slope in order to sat-
isfy the yield constraint. The flow rate change is relatively
small, as compared to the gradient slope change, since the
flow rate is more closely linked to mass transport effects.
These results confirm that GR2R is indeed capable of han-
dling both step and drift disturbances for gradient separation
processes while satisfying process constraints.

Extremal control results for displacement chromatography
The performance of a displacement process using GR2R

control in the presence of various disturbances was also in-
vestigated.

Figure 7. Production rate of gradient separation pro-
cess operating with and without R2R control
in the presence of unmeasured step distur-

(bance in feed load at startup from 2.0 to 1.9
)column volumes .

The solid line is the fixed optimal condition result and the
dotted line is the result obtained using GR2R.

The effect of an unmeasured step disturbance of feed load
Ž .at the 6th run from 1.0 to 0.95 column volume and feed

Žconcentration of � chymotrypsinogen A the 31st run from
.0.15 to 0.14 mM was examined. In addition, noise is added

to the input signals to represent typical uncertainty in these
values under actual operating conditions. As seen in Figure
9, the production rate for the process operating with GR2R2
control was always higher than the one operating with fixed
operating conditions. Importantly, this result substantiates
that GR2R can actually move the process to new optimal
conditions in the presence of multiple disturbances.

We then examined the performance of these systems in the
presence of multiple unmeasured and autocorrelated distur-

Žbances. An unmeasured disturbance in feed load from 1.0 to
.0.95 column volume and a continuous decrease in bed ca-

Žpacity at the rate of 1.0 mM per run were examined both
.occurring at the 6th run . The results in Figure 10 show that

the GR2R controller was able to maintain the production rate
at the optimal value after the disturbances occurred. On the
other hand, the performance of the process operating with
fixed optimal conditions deteriorated continuously. This is
due to the fact that in the process operating with run to run
control, a new feasible optima was found and corrective ac-
tion was taken by changing the manipulated inputs resulting
in an increased production rate.

The last example deals with the case of varying target spec-
ifications. While the examples given thus far in this article
have used the production rate as the objective function, in
this example both the production rate and yield are included
in the objective function with a weighting ratio of 4 to 1, re-
spectively. The specific objective function employed in this
work was the minimization of the difference of production
rate and yield with respect to their desired target values. Un-
der these conditions, manipulated inputs have to be changed
to achieve the desired attributes. In Figure 11, a case is pre-
sented in which several new targets are specified during the
run. At the first run, the production rate target is increased
from 15.6 to 17.0 and the yield is increased from 89 to 90%.
At the 5th run, the desired production rate was decreased
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Ž .from 17 to 15 mMrmin , while the desired yield was in-
creased further from 90 to 94%. As seen in the figure, both
the production rate and the yield were driven to the new
targets, although the weighting of the production rate re-

Žsulted in a more rapid adjustment. Note: it would be
straightforward to reformulate the GR2R controller to use
alternative objective functions in order to improve the perfor-

.mance with respect to yield. In order to achieve these new
specifications, the controller determined that the manipu-

Ž .lated variables flow rate and displacer concentration should
change as shown in the figure. The displacer concentration
was first decreased and the flow rate was increased in order
to produce the initial increase in production rate and yield.
After the 5th run, the displacer concentration was continu-
ously decreased and the flow rate exhibited a sharp initial
decrease in order to attempt to satisfy the new yield target of
94%. It turned out that this yield target was quite difficult
for this particular system. The interplay between displacer

concentration and flow rate determined by the controller for
this particular case is not intuitively obvious, and will be the
subject of a future investigation.

Conclusions
There is a pressing challenge in the biotechnological indus-

try to develop effective nonlinear preparative chromato-
graphic processes. In order to address this challenge, we have
developed a novel GR2R technique that has the ability for
simultaneous optimization and control of nonlinear chro-
matographic processes. The strategy presented can optimize
and control the process in the presence of batch-to-batch and
sporadic variations and can have a significant impact on the
design and operation of more efficient preparative chromato-
graphic processes. The results presented in this article
demonstrate that the current practice of using fixed optimal
conditions can lead to suboptimal performance in the pres-

Figure 8. Production rate and yield of gradient separation process operating with and without R2R control in the
( ) (presence of unmeasured step feed load at start up from 2.0 to 1.95 and drift continuous decrease in bed

)capacity at the rate of 10 mM per run from startup disturbance.
Ž . Ž . Ž .a Change in production rate in each run; b change in yield in each run; c optimal change in flow rate at each run computed by GR2R;
Ž .d optimal change in gradient slope at each run computed by GR2R. a and b the solid lines are the fixed optimal condition results, and the
dotted lines are the result obtained using GR2R.
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Figure 9. Production rate of displacement separation
process operating with and without R2R con-
trol in the presence of unmeasured step dis-

(turbances of feed load at 6th run from 1.0
) (to 0.95 and feed concentration � chy-

motrypsinogen A at 31st run from 0.15 to 0.14
)mM .

The solid line is the fixed optimal condition result and the
dotted line is the result obtained using GR2R.

ence of measured and unmeasured disturbances. In contrast,
processes using generalized run to run control can result in
an improved performance in the presence of a variety of dis-
turbances. The GR2R strategy is highly efficient in rejecting
disturbances, as well as for target tracking.

Figure 10. Production rate of displacement separation
(process in the presence of unmeasured feed

)load at 6th run from 1.0 to 0.95 and autocor-
(related continuous decrease in bed capac-

)ity at the rate of 1.0 mM per run from 6th run
disturbances.
The solid line is the fixed optimal condition result and the
dotted line is the result obtained using GR2R.

We will validate this approach in future work with experi-
mental results and will develop a protocol for updating the
parameters of the physical model. For more complex systems,
the increased nonlinearity in the empirical model will neces-
sitate the use of rigorous nonlinear optimization algorithm.
Further efforts will be made towards using dynamic program-

Ž .ming methods Cuthrell and Biegler, 1987 to decrease the
computational cost involved in such complex nonlinear opti-
mization. The GR2R control method presented in this article

Figure 11. Varying target specifications: production rate changed from 17 to 15 at 6th run; yield changed from 90 to
9 at 6th run.
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has significant potential for improving the performance of
large-scale chromatographic processes.

Acknowledgments
The financial support of Amersham Pharmacia Biotech is grate-

fully acknowledged.

Notation
C smobile phase concentration, mMi

C sfeed concentration, mMf i
C smobile phase salt concentration, mM1

D saxial dispersion coefficient, cm2rsai
Fsflow rate, mLrmin

H sheight equivalent to a theoretical plate, cmi
ksrun number

k slumped mass transport coefficient, sy1
m i

K ssteric mass action isotherm equilibrium constantSm ai
Lslength of column, cm

Mscontrol horizon
Psprediction horizon

PRsproduction rate, mMrmin
Q sstationary phase concentration, mMi
Q sconcentration of bound salt that is not sterically shielded,1

mM
Qequilsequilibrium stationary phase concentration, mMi

Rsparticle radius, cm
t scycle time, mincyc

t sfeed time, minf
ussuperficial velocity, cmrs

V sfeed volume, mLf
V sstationary phase volume, cm3

s p
xsaxial distance, cm
Ysyield

Greek letters
�sweights on the magnitude of the change in the input �u
�sweights on the magnitude of the input u

sweights on the prediction error in MPC
� stotal porosityt
�sionic capacity, mM
� scharacteristic charge for ith componenti
� ssteric factori
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Appendix

Steps for the Modified Gram Schmidt based identification
Regressor matrix P is factorized into an auxiliary matrix W

and upper triangular matrix A as PsWA
� The first step is to estimate the upper triangular matrix

A by
�

y1 T T TAsD W PrW W where DsW W
� Then, an Auxiliary matrix W is estimated recursively by
� Ž .WsPyW Ay I
� The third step is to compute the auxiliary parameter vec-

tor g using
�

y1 TgsD W Z
� Then, 
 is computed using
� ˆ ˆŽ .
s gy Ay I 
ˆ
� Ž .At each stage k th in Eq. 13 , the error reduction coeffi-

Ž .cient is computed using Modified Gram-Schmidt MGS pro-
cedure

2i ky1 Žky1.² :g p , zŽ .k iiw xerr s A1Ž .k ² :z , z

The maximum error reduction column j is found and re-
placed with the kth column. MGS is again performed until
the desired tolerance is reached.

Nonlinear recursi©e parameter estimation and model
update

The nonlinear empirical model is then cast into a nonmini-
mal state space realization using the delay coordinate method.
The states are defined as

y ky iq1 u ky jŽ . Ž .1 1

. .a bx k s ; x k sŽ . Ž .i j. .
y ky iq1 u ky jŽ . Ž .p q

is1,...... n q1; js1,...... ny u

where subscripts p and q denote the number of outputs and
Ž .inputs, respectively. The state of the system x k is defined

as

Ta a b bx k s x k ......... x k x k ......... x kŽ . Ž . Ž . Ž . Ž .1 n q1 1 ny u

The multiinput, multioutput empirical model can then be
compactly written as

w xx kq1 sF x k ,u kŽ . Ž . Ž .

w xy k sh x k A2Ž . Ž . Ž .

The estimator for this model can be designed as

� �w xx kq1 k sF x k k ,u kŽ . Ž . Ž .ˆ ˆ

� � w xx k k s x k ky1 qL k y kq1 y y kq1rkŽ . Ž . Ž . Ž . Ž .ˆ ˆ ˜ ˆ

�w xy k sh x k k A3Ž . Ž . Ž .ˆ ˆ

�where k k denotes the estimated value at k th batch knowing
the information available at the k th batch.

The major Steps in RPEM are:
Time Update:

w xx kq1rk sF x krk ,u k ,� kŽ . Ž . Ž . Ž .ˆ ˆ

Output Calculation:

w xy kq1rk sh x kq1rkŽ . Ž .ˆ ˆ

Error Calculation:

� kq1rk s y kq1 y y kq1rkŽ . Ž . Ž .˜ ˆ

Measurement Update:

x kq1rkq1 s x kq1rk qL k � kq1rkŽ . Ž . Ž . Ž .ˆ ˆ

Parameter Update:

�̂ kq1Ž .ˆ ˆ� kq1 s s� kŽ . Ž .
L kq1Ž .

P k � kŽ . Ž .cq � kq1rkŽ .T� k q� k P k � kŽ . Ž . Ž . Ž .c

( )� kq1 Calculation:

w x� F x krk ,u k ,� kŽ . Ž . Ž .ˆw x� kq1 s IyL k C k � kŽ . Ž . Ž . Ž .
� x krkŽ .ˆ

w x� F x krk ,u k ,� k qL k � kq1rk	 4Ž . Ž . Ž . Ž . Ž .ˆ
q ˆ� � krkŽ .
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( )P kq1 Calculation:C

P k � k �T k P kŽ . Ž . Ž . Ž .C C
P kq1 sP k y q
 IŽ . Ž .C C T� k q� k P k � kŽ . Ž . Ž . Ž .C

( )� kq1 Calculation:

� kq1 s�T kq1 CTŽ . Ž . k

Ž .where � k denotes ‘‘forgetting factor,’’ and 
 is a regulariza-
Ž .tion parameter selected to maintain P k positive definite.C

Ž .The initial value of � 0 is selected as matrix of zeros and
Ž .P 0 is a diagonal matrix.C
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