LAPORAN PRAKTIKUM HISTOTEKNIK

NAMA : Ferry Prawira Gurusinga
GRUP : Siang (13.00-16.00)
HARI & TANGGAL : Kamis, 24 Oktober 2013

I. TUJUAN PRAKTIKUM

- 1. Mahasiswa mampu memahami dan melakukan langkah-langkah histoteknik dalam pembuatan sediaan preparat jaringan.
- 2. Mahasiswa mampu mengamati dan menganalisa sediaan preparat jaringan yang telah dibuat dengan menggunakan mikroskop.

II. PENDAHULUAN

Histoteknik merupakan suatu metoda dalam membuat sajian histologi dari suatu spesimen tertentu melalui suatu rangkaian proses hingga menjadi suatu sajian yang siap dianalisis. Rangkaian proses dari histoteknik, yaitu:

1.	Fiksasi	4.	Pembenaman	7.	Pewarnaan
2.	Dehidrasi	5.	Pengecoran	8.	Perekatan
3.	Pembeningan	6.	Pemotongan	9.	Pelabelan

III. ALAT DAN BAHAN

1.	Jaringan	9. Albumin	17. 2 buah Leuckhart
2.	Larutan formalin 10%	10. Gliserin	18. Mikrotom
3.	Larutan alkohol 70%	11. Air kran mengalir	19. Waterbath
4.	Larutan alkohol 80%	12. Pewarna hematoksilin	20. Kaca obyek
5.	Larutan alkohol 90%	13. Pewarna eosin	21. Lembaran logam
6.	Larutan alkohol absolut	14. Balsem kanada	22. Kaca penutup
7.	Larutan xylol	15. Sengkelit	23. Label
8.	Parafin cair	16. Inkubator	24. Mikroskop

IV. CARA KERJA

1. Fiksasi

Cara pengawetan jaringan ada 2 jenis, yaitu supravital/intravital atau merendam dalam larutan pengawet. Beberapa hal yang perlu diperhatikan dalam fiksasi jaringan, yaitu:

- a. Tebal irisan.
- b. Volum larutan pengawet.
- c. Jenis larutan pengawet, contohnya formalin, bouin, carnoy, etanol, dan lain sebagainya.

2. Dehidrasi

Dehidrasikan jaringan supaya dapat diisi oleh parafin, dengan tujuan jaringan dapat diiris tipis. Dehidran yang sering digunakan adalah alkohol atau aseton. Caranya:

- Alkohol: dari konsentrasi rendah ke tinggi, alkohol 70%, 80%, dan 90% masing-masing 1 hari; alkohol 95% 2 hari (2x ganti); yang terakhir alkohol absolut 2 hari (2x ganti).
- Aseton: 3x20 menit (3x ganti).

3. Pembeningan

Pembeningan dilakukan untuk mengeluarkan dehidran dan diganti dengan bahan kimia berupa *clearing agent*, seperti xylena (xylol). Xylol bersifat karsinogenik, tetapi memiliki *clearing time* yang cepat, yaitu 30-60 menit. Volum xylol adalah 20x volum jaringan. Lakukan pembeningan hingga jaringan menjadi bening dan transparan, kemudian masukan jaringan ke dalam parafin cair panas dalam oven parafin.

4. Pembenaman

Pembenaman dilakukan untuk mengeluarkan *clearing agent* dan diganti dengan parafin. Parafin yang sering digunakan untuk tujuan rutin, yaitu parafin dengan *melting point* 56-59°C. Caranya, rendam jaringan dalam parafin cair di oven suhu 60°C, selama 3x1 jam (3x ganti parafin). Perlu diperhatikan *clearing agent* yang mengkristal dalam jaringan, karena jaringan akan robek ketika dipotong dengan mikrotom.

5. Pengecoran

Langkah ini dilakukan untuk membuat blok parafin supaya dapat dipotong dengan mikrotom. Caranya, tuang parafin ke dalam 2 buah leuckhart berbentuk ruang seperti kubus yang disusun di atas lembaran logam, di mana jaringan yang akan dilihat diletakan di bagian dasar cetakan. Hindari terbentuknya *air bubble*. Lalu, beri label identitas jaringan.

6. Pemotongan

Iris blok parafin menggunakan mikrotom dengan kisaran ketebalan antara $5-10 \mu m$. Hasil irisan yang bagus dimasukkan ke dalam waterbath suhu 50° C. Setelah pita parafin terkembang dengan baik, tempelkan pita parafin secara hati-hati ke kaca obyek yang telah dilapisi dengan albumin dan gliserin, keringkan di tempat terbuka.

7. Pewarnaan

Pewarnaan rutin yang sering digunakan, yaitu hematoksilin-eosin (HE). Hematoksilin mewarnai nukleus, sedangkan eosin mewarnai sitoplasma. Proses pewarnaan dilakukan dengan memasukkan kaca obyek berisi jaringan ke dalam larutan-larutan yang tersedia sebagai berikut:

NO	LARUTAN	LAMA
1	Xylol I	5 menit
2	Xylol II	5 menit
3	Alkohol absolut I	2 menit
4	Alkohol absolut II	2 menit
5	Alkohol 90% I	2 menit
6	Alkohol 90% II	2 menit
7	Alkohol 80% I	2 menit
8	Alkohol 80% II	2 menit
9	Alkohol 70% I	2 menit
10	Alkohol 70% II	2 menit
11	Hematoksilin Mayer	5 menit
12	Air kran mengalir	5 menit
13	Eosin	3 menit
14	Air kran mengalir	5 menit
15	Alkohol 70% I	10x celup
16	Alkohol 70% II	10x celup
17	Alkohol 80% I	10x celup
18	Alkohol 80% II	10x celup
19	Alkohol 90% I	10x celup
20	Alkohol 90% II	10x celup
21	Alkohol absolut I	10x celup
22	Alkohol absolut II	10x celup
23	Xylol I	2 menit
24	Xylol II	2 menit

8. Perekatan

Tempelkan kaca obyek sediaan preparat jaringan dengan kaca penutup yang telah ditetesi 1 tetes balsem kanada. Hindari *air bubble*. Bila ada, lakukan penekanan hingga *air bubble* tidak ada.

9. Pelabelan

Beri label pada kaca obyek sediaan preparat jaringan, kemudian amati dan analisa sediaan preparat jaringan tersebut di bawah mikroskop.

V. HASIL PRAKTIKUM

NO	KEGIATAN	LAMA	CONTRENG
1	Pemrosesan jaringan		
2	Dehidrasi		
	Aseton I	20 menit	✓
	Aseton II	20 menit	✓
	Aseton III	20 menit	✓
3	Clearing		
	Xylol I	30 menit	✓
	Xylol II	30 menit	✓
4	Impregnating		✓ ✓ ✓
5	Blocking		✓
6	Sectioning		✓
7	Mounting		✓
8	Drying		√
9	Pewarnaan HE		
	Xylol I	5 menit	✓
	Xylol II	5 menit	✓
	Alkohol absolut I	2 menit	✓
	Alkohol absolut II	2 menit	✓
	Alkohol 90% I	2 menit	✓
	Alkohol 90% II	2 menit	✓ ✓ ✓ ✓ ✓
	Alkohol 80% I	2 menit	✓
	Alkohol 80% II	2 menit	✓
	Alkohol 70% I	2 menit	✓
	Alkohol 70% II	2 menit	✓
	Hematoksilin Mayer	5 menit	✓ ✓ ✓
	Air kran mengalir	5 menit	✓
	Eosin	3 menit	✓
	Air kran mengalir	5 menit	✓
	Alkohol 70% I	10x celup	✓
	Alkohol 70% II	10x celup	✓
	Alkohol 80% I	10x celup	✓
	Alkohol 80% II	10x celup	√
	Alkohol 90% I	10x celup	✓
	Alkohol 90% II	10x celup	✓
	Alkohol absolut I	10x celup	✓
	Alkohol absolut II	10x celup	✓
	Xylol I	2 menit	✓
	Xylol II	2 menit	✓

VI. KESIMPULAN

1. *Blocking* yang ada, dapat disimpan dalam waktu yang lama,sehingga memudahkan pengamatan dan analisa apabila diperlukan sewaktu-waktu tanpa harus melalui tahapan fiksasi, dehidrasi, *clearing*, dan *impregnating* terlebih dahulu.

- 2. *Blocking* memberikan kemudahan dalam melakukan irisan sediaan preparat jaringan sesuai ketebalan yang diinginkan tanpa merusak jaringan yang ada.
- 3. Tahapan dari histoteknik membutuhkan waktu yang lama dalam membuat sediaan preparat jaringan, sehingga dibutuhkan kesabaran dalam pengerjaan proses tahapan tersebut.
- 4. Dibutuhkan tingkat ketelitian yang tinggi dalam pemotongan jaringan.

VII. SARAN

Sebaiknya ada penambahan durasi praktikum histoteknik, agar prosedur yang ada dapat diterapkan dengan baik dan benar, baik di saat praktikum maupun di kemudian hari.