Quantum Dot Biosensor for Detection of Troponin I Using a Liquid-Core Waveguide Platform

R Cody Stringer
Dr. Sheila A Grant, Dr. Shubhra Gangopadhyay

Department of Biological Engineering

Department of Electrical and Computer Engineering

University of Missouri

Introduction

- Human cardiac Troponin I (TnI) is a subunit of the cardiac Troponin complex
- Upon cardiac injury, TnI is released into the bloodstream
- Accurate, sensitive, and expeditious detection of TnI is important for diagnosis of myocardial infarction
- Proposed biosensor must be capable of rapid, sensitive, and selective TnI detection

Fluorescence Resonance Energy Transfer

- Nonradiative energy transfer between donor and acceptor fluorescent species
- Requires species to be in close proximity and spectral overlap in donor emission and acceptor absorbance
- Degree of energy transfer is highly sensitive to distance between fluorescent molecules

Biosensor Architecture

- Quantum dot FRET donor & molecular scaffold
- Bound to acceptor-labeled Tnl antibody
- Upon antibody-antigen binding, conformation change in antibody occurs
- Resulting change in distance between donor and acceptor is detected by change in FRET efficiency

Liquid-Core Waveguide Platform

- Glass capillaries lined with a nanoporous organosilicate layer (refractive index ~ 1.22)
- Layers vary in thickness from 2.52 to 4.41 µm based on flow rate

Fluorescence Measurements

- Biosensor solutions prepared and combined with analyte solution
- Injected into liquid-core waveguide
- Illuminated at 405 nm
- Guided fluorescence coupled into optical fiber
- Optical fiber directs light into spectrometer

Troponin I Dose Response

- Sensor response measured by acceptor to donor fluorescence peak emission (A/D Value)
- R² value: 0.84
- Lower limit of detection: 32.8 nM

Sensor Specificity and Response Time

- Biosensor response to Tnl as compared to Bovine serum albumin (BSA)
 - Tnl induces an A/D value increase of 0.611
 - BSA induces an A/D value increase of 0.041
- Largest increase in biosensor response occurs within 1 minute

Sensor Response in Human Plasma

- Sensor dose response repeated with TnIspiked human plasma
- R² value: 0.89
- Lower limit of detection:
 55 nM

Discussion

- Biosensor response time (~ 1 min) is currently lower than commercially available assays (> 15 min)
- Sensitivity and detection limit must be further optimized for feasible application
- Immobilization of sensor architecture could potentially enhance sensor by increasing sensitivity and lowering total assay time
- With further development, the proposed optical biosensor could be a viable diagnostic method in the clinical environment

Acknowledgements

- Daniel Hoehn
 - Department of Biological Engineering
 University of Missouri
- Venu Korampally, PhD
 - Department of Electrical Engineering
 University of Missouri
- Funding:
 - Award Number 0009807: USDA PRRS Initiative
 - Award Number 0440524: NSF Engineering Fellows in G6-9
 Science Education
 - Award Number 0012436: Department of the Army

