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Abstract

Cascade control is commonly used in the operation of chemical processes to reject disturbances that have a rapid e4ect on a secondary
measured state, before the primary measured variable is a4ected. In this paper, we develop a state estimation-based model predictive
control approach that has the same general philosophy of cascade control (taking advantage of secondary measurements to aid disturbance
rejection), with the additional advantage of the constraint handling capability of model predictive control (MPC). State estimation is
achieved by using a Kalman 8lter and appending modeled disturbances as augmented states to the original system model. The example
application is an open-loop unstable jacketed exothermic chemical reactor, where the jacket temperature is used as a secondary measurement
in order to infer disturbances in jacket feed temperature and=or reactor feed ;ow rate. The MPC-based cascade strategy yields signi8cantly
better performance than classical cascade control when operating close to constraints on the jacket ;ow rate. ? 2002 Published by Elsevier
Science Ltd.
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1. Motivation

Chemical processes often have multiple time-scale dy-
namic behavior. Consider the control instrumentation di-
agram for a jacketed chemical reactor shown in Fig. 1.
In this cascade control strategy, there is one manipulated
variable (jacket ;ow rate) and several measured vari-
ables (reactor temperature and jacket temperature). The
output of the primary controller is the setpoint (jacket
temperature) to the secondary controller. The output of
the secondary controller is the setpoint (jacket ;ow rate)
to the tertiary controller. The tertiary controller rejects
disturbances that directly a4ect the jacket ;ow rate (typ-
ically coolant pressure header disturbances), while the
secondary controller rejects disturbances that directly a4ect
the jacket temperature (typically jacket feed temperature
disturbances). The primary controller provides long-term
integral control of the reactor temperature. This control
con8guration also holds for the case with recirculating
jacket ;ow. Note that the example control strategy is that
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of a double cascade controller. In the sequel, we neglect the
dynamics associated with the ;ow control loop and assume
that the jacket ;ow rate is directly manipulated.
A sequential procedure is normally suggested for

cascade control system design. A proportional inner-loop
controller with a high gain is often used to assure rapid re-
jection of inner-loop disturbances. Once the inner-loop con-
troller is tuned, the outer-loop controller is tuned for setpoint
changes and outer-loop disturbances. It should be noted that
this procedure cannot be used for chemical reactors that
are open-loop unstable, because closing the secondary loop
alone does not stabilize the process. For these systems, both
loops must be closed simultaneously. The objective of this
paper is to develop a model predictive control (MPC) for-
mulation for control of open-loop unstable cascade systems.
We show how to combine state estimation with MPC to
reject primary and secondary disturbances while satisfying
manipulated variable constraints. The MPC structure explic-
itly handles constraints and state estimation provides o4set
removal and the ability to reject disturbances. We com-
pare MPC with traditional cascade control on the nonlinear
CSTR operating at an open-loop unstable steady state. State
estimation is performed using a discrete dynamic Kalman
8lter using reactor and jacket temperature measurements.
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Fig. 1. Process ;ow diagram for cascade control of reactor temperature in a CSTR.

The structure of the paper is as follows: Section 2 pro-
vides a description of the process, Section 3 describes the
controller design (for MPC and “classical” cascade control),
Section 4 presents simulation results and Section 5 presents
conclusions and suggestions for future work.

2. Process description

2.1. CSTR modeling equations

An exothermic diabatic irreversible 8rst order reaction
(A → B) is described by a set of di4erential equations ob-
tained from material and energy balances (with assumptions
of constant volume, perfect mixing and constant physical
parameters) as shown below:

dx1
d�

= q(x1f − x1)− �x1	(x2); (1)

dx2
d�

= q(x2f − x2)− �(x2 − x3) + ��x1	(x2); (2)

dx3
d�

= �1[qc(x3f − x3) + ��2(x2 − x3)]: (3)

Here, x1 is the dimensionless concentration of reactant A,
x2 is the dimensionless reactor temperature, and x3 is the
dimensionless jacket temperature. The representative values
of dimensionless variables and parameters are from Russo

Table 1
Three-state CSTR model parameter values

� 0.072 �1 10

� 8.0 �2 1.0
� 0.3 x1f 1.0
� 20 x2f 0.0
q 1.0 x3f −1:0

and Bequette (1997). Model parameter values are speci8ed
in Table 1.
This is a nonlinear system, since the reaction rate constant

depends nonlinearly on the temperature as dictated by the
Arrhenius rate expression. As mentioned by Russo and Be-
quette (1995), CSTRs present challenging operational and
control problems due to complex open-loop behavior such
as input and output multiplicities, ignition=extinction behav-
ior, parametric sensitivity, nonlinear oscillations, and chaos.
The parameters chosen are shown by Russo and Bequette
(1997) to exhibit open-loop unstable behavior for a range of
reactor temperatures bounded by the limit points (x2 ≈ 1:5
and 3.0). An important feature of this system with the pa-
rameter values given in Table 1 is that closing the secondary
loop (jacket temperature control) alone does not stabilize
the process, since the instability resides in the primary loop
(reactor temperature control). The CSTR has multiplicity
behavior with respect to the jacket temperature and jacket
;ow rate as shown in Fig. 2.
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Fig. 2. Steady state dimensionless reactor temperature versus cooling jacket temperature (x3) and ;ow rate (qc) for the jacketed exothermic CSTR.

3. Controller design

The control objective is to keep the dimensionless tem-
perature of the reacting mixture (x2) constant at a desired
value. Possible disturbances to the reactor include the feed
temperature (x2f) and the jacket feed temperature (x3f). The
only manipulated variable is the jacket ;ow rate (qc). The
reactor temperature responds much faster to changes in re-
actor feed temperature (x2f) than to changes in jacket feed
temperature (x3f). Therefore, feedback control will be more
e4ective in controlling variations in the reactor temperature,
and less e4ective in controlling variations in jacket feed
temperature. The response of feedback control to changes
in the jacket temperature can be improved by measuring x3
(outlet jacket temperature) and taking control action before
its e4ect is felt by the reacting mixture. If the outlet jacket
temperature increases, the jacket ;ow rate can be increased
to remove the equivalent heat. The idea is to have two con-
trolled loops using two di4erent measurement x2and x3, but
sharing a common manipulated variable qc.
Cascade control design has been dealt with extensively in

the literature. Russo and Bequette (1997) developed a state
space-based representation for cascade control design. They
have dealt with the case of linear control structures where
an inner loop controller gain is pre-speci8ed. Their result
shows that an input–output representation of a cascade con-
trol system may not capture the true behavior of closed-loop
system if primary and secondary processes are coupled in
state-space. Semino and Brambilla (1996) have proposed an
eMcient structure for parallel cascade control which avoids
interactions between the two loops, but their control struc-

ture is strictly based on the internal model control (IMC)
being carefully designed. Semino, Porcari, and Brambilla
(1998) suggest the use of predictive control in cascade sys-
tems, which are advantageous for the cases where constraints
play an important role and also if process dynamics are com-
plex. They do not, however, actually implement a predictive
controller.
Dumur, Boucher, and Kolb (1996) have implemented a

cascade predictive structure using a constrained receding
horizon predictive control algorithm with multiple reference
models (CRHPC=MRM) in the inner loop and generalized
predictive control (GPC) in the outer loop. Their formu-
lation restricts the use of CRHPC=MRM to the inner loop
when setpoint tracking has to be followed. Linear model
predictive control uses a linear process model to specify ma-
nipulated variable action to optimize an objective function
over a future time horizon. The types of linear time invari-
ant models used in MPC are state space, transfer-function
matrix, and 8nite step or impulse response models. Convo-
lution models can represent a variety of dynamic responses,
but they lack the ability to represent unstable plants. Ricker
(1990) has shown the advantages of using state estimation
instead of the additive output disturbance commonly used
in dynamic matrix control (DMC). A primary incentive for
implementing MPC is for explicit constraint handling.
There are several options for implementing an MPC strat-

egy on a CSTR with two temperature measurements and a
single manipulated input. One option (perhaps the one most
commonly used) is to use MPC on the “outer loop” (where
jacket temperature setpoint is the manipulated variable
and reactor temperature is the measured variable), and PI
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control on the inner loop (where jacket temperature is
measured and coolant ;ow rate manipulated). This option
would not be able to directly incorporate coolant ;ow rate
constraints, however. Another option is to use MPC on
both the outer and inner loops. This seems conceptually
complex, compared to the next option. The third option is
to use a single MPC strategy that incorporates both reactor
and jacket temperature measurements, and manipulates the
jacket ;ow rate; this is the approach used in this paper. Our
formulation is di4erent from a typical “non-square” MPC
formulation, however. Standard MPC with more outputs
than inputs will typically result in o4set in all of the output
variables. We develop an MPC formulation where only the
reactor output is considered in the control objective func-
tion, but jacket temperature is used in the state estimation
procedure to improve rejection of coolant feed temperature
disturbances and outer loop disturbances. This results in a
“square” formulation for MPC, but with the incorporation
of information from secondary measurements. Two di4erent
approaches for MPC are presented; Section 3.1 covers the
in8nite horizon strategy, while Section 3.2 covers the 8nite
horizon strategy. The design for classical cascade control
is presented in Section 3.3. Since we are working with an
open-loop unstable system, the guarantee of constrained
stabilizability o4ered by the in8nite horizon controller is
appealing. The 8nite horizon model predictive controller
provides a less computationally demanding alternative, but
the controller must be tuned for stability. By conducting
simulations with both model predictive controllers, we
seek to compare their performance relative to each other
in addition to exploring the trade-o4 in the computational
requirements of the two controllers.

3.1. In4nite horizon MPC

We have used the approach of Muske and Rawlings
(1993) for in8nite horizon, state space-based MPC. The
main advantage of the in8nite over the 8nite horizon is elim-
ination of the requirement of tuning for nominal stability.
For unstable systems, the in8nite horizon approach incor-
porates constrained stabilizability to bring unstable modes
to the origin. Nominal stability is achieved by including
a terminal state penalty term, which converts the in8nite
horizon objective function into an equivalent 8nite horizon
objective function. The advantages of in8nite horizon come
with a high computational cost. Gilbert and Tan (1991)
mention that the constraint horizon has to be chosen large
enough that satisfying the constraints within the 8nite hori-
zon implies the same for the in8nite horizon. In the present
paper, we use a linear control law on a nonlinear plant, since
the theory of in8nite horizon MPC for nonlinear systems is
still under development. de Nicolao, Magni, and Scattolini
(1998) have presented a nonlinear in8nite horizon scheme
which guarantees exponential stability of the equilibrium
for any value of the horizon and avoids the use of equal-

ity constraints, thereby providing signi8cant computational
savings. Mayne, Rawlings, Rao, and Scokaert (2000) have
presented the essential principles for the stability of model
predictive control of constrained dynamical systems.
The discrete dynamical system model used by the con-

troller is the state-space formulation in which y is the vector
of outputs, u is the vector of inputs, and x is the vector of
states.

xk+1 = �xk + �uk ;

yk = Cxk : (4)

Muske and Rawlings (1993) express the in8nite horizon
open-loop objective function as a 8nite horizon open-loop
objective function with the form

min
uN
�k = xTk+N OQxk+N

+PuTk+NSPuk+N +
N−1∑
j=0

(
xTk+jC

TQCxk+j

+uTk+jRuk+j +PuTk+jSPuk+j
)
: (5)

For tracking a non-zero target vector, the following quadratic
objective function is used for the regulator:

min
uN
�k = (xk+N − xS)T OQ(xk+N − xS) + PuTk+NSPuk+N

+
N−1∑
j=0

((xk+N − xS)TCTQC(xk+N − xS)

+ (uk+j − us)TR(uk+j − us) + PuTk+jSPuk+j);
(6)

whereQ is a symmetric positive semi-de8nite penalty matrix
on the outputs, R is a symmetric positive de8nite penalty ma-
trix on the inputs, and S is a symmetric positive semi-de8nite
penalty matrix on the rate of change in the inputs, with
Puk+j = uk+j − uk+j−1 being the change in the input vector
at time j. The vector uN contains the N future open-loop
control moves as shown below:

uN =




uk
uk+1
...

uk+N−1


 : (7)

The value of the state penalty matrix OQ depends on the sta-
bility of the plant model. For stable systems OQ is expressed
as

OQ =
∞∑
i=0

�TiCTQC�i: (8)

The in8nite sum is determined as the solution of the follow-
ing discrete Lyapunov equation for stable systems:

OQ = CTQC + �T OQ�: (9)

For unstable systems, the Jordan form of the � matrix is
partitioned into stable and unstable parts. The unstable
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eigenvalues of � are contained in Ju and stable eigenvalues
are in Js.

�= VJV−1 = [VuVs]
[
Ju 0
0 Js

] [
OVu
OVs

]
: (10)

For the unstable system, OQ is represented as

OQ = OV
T
s

∑
OVs;

�= V T
S C

TQCVS + J TS � JS : (11)

The main advantage of in8nite horizon comes from the
fact that it forces unstable modes to go to zero after the end
of control horizon, N , at each time step k using the equality
constraint (12) even though the solution with this constraint
makes the problem computationally expensive.

Ṽ uxk+N = 0: (12)

The input, output and velocity constraints are easily
formed as G̃6 0, where G̃ is the matrix of constraints.
The detailed formulation has been presented in Muske and
Rawlings (1993).

3.2. Finite horizon MPC

There are many approaches to form the objective func-
tion for 8nite horizon MPC. Ricker (1990) presents an aug-
mented state-space model approach. The formulation used
in this paper for the 8nite horizon is similar to the in8nite
horizon approach, with the di4erence lying in the fact that
the terminal state penalty matrix is not present. This means
that nominal stability and constrained stabilizability cannot
be guaranteed, but can only be judged based on proper se-
lection of tuning parameters.
The objective function used for the 8nite horizon in this

paper is

min
uN
�k =

N1∑
j=1

((xk+N − xS)TCTQC(xk+N − xS)

+(uk+j − us)TR(uk+j − us) + PuTk+jSPuk+j);
(13)

where N denotes the control horizon and N1 denotes the out-
put prediction horizon. Finite horizon MPC provides com-
putational savings over in8nite horizon MPC and is the most
common MPC implementation in industry today. To get in-
tegral action, an input step disturbance model is used for the
estimation of the states. We have used the step disturbance
regulator to determine the input and state target vectors that
can remove the step disturbance at steady state and maintain
the steady state output at the desired state. Muske and Rawl-
ings (1993) presented this regulator for the in8nite horizon
formulation, but it can be used for a 8nite horizon formu-
lation as well. The minimization of the objective function
in Eq. (13) is performed subject to manipulated variable
(jacket ;ow rate, qc) constraints.

3.3. State estimation

The linear observer is used for the system in which wk
and vk are zero-mean, uncorrelated normally distributed,
stochastic variables appended to the process model:

xk+1 = �xk + �uk + Gwwk;

yk = Cxk + vk : (14)

The discrete time Kalman 8lter (Lewis, 1986) is used for
state estimation.
The time update equations are

Error covariance: Pk+1|k = �Pk|k�T + GwQwGT
w;

Estimate: x̂k+1|k = �x̂k|k + �uk ; (15)

and the measurement update equations are

Error covariance:

Pk+1|k+1 = Pk+1|k − Pk+1|kCT(CPk+1|kCT + Rv)−1CPk+1|k ;

Estimate:

x̂k+1|k+1 = x̂k+1|k + Pk+1|kCTRw(zk+1 − Cx̂k+1|k): (16)

Qw is the covariance of wk , Rv is the covariance of vk , P de-
notes the covariance of the state estimates and z is the vec-
tor of output measurements. This observer optimally recon-
structs the states from the output measurements given the
noise assumptions. Since not all the states are directly mea-
sured, the objective functions for the regulators in Eqs. (6)
and (13) are modi8ed with the true values of the states being
replaced by the state estimates obtained from the discrete
time Kalman 8lter. The optimal linear observer provides bi-
ased estimates when step disturbances a4ect the process.
An appended state model is used to overcome this, where
additional states (used to estimate the disturbances) are ap-
pended to the model. The disturbance can be appended as
step input or step output disturbances. Since the operating
point of the jacketed CSTR for the case dealt in the paper is
unstable we cannot use the output step disturbance method
to obtain integral action. This is because the observer poles
will contain the plant poles and lead to instability in the reg-
ulator. The input disturbance model can be implemented in
various ways. Muske and Rawlings (1993) present the case
where the disturbance is assumed to be in the manipulated
variable uk . We have used the formulation where the distur-
bance enters the state equations as an additional input, and
an additional state is appended to estimate the disturbance.
The underlying assumption is that the di4erence between
the predicted output and the measurement is caused by an
input disturbance. The approach is formulated as

xk+1 = �xk + �̃ũ;

zk+1 = zk ;

yk = Cxk ;
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ũ=
[
uk
zk

]
;

�̃1 = �;

�̃ = [��̃2 : : : �̃r+1]; (17)

where n is the number of states in the system and r is the
number of states appended as disturbances.
The augmented system is represented as

OX k+1 = �X k + O�uk ;

yk = CX k;

O�=
[
� �̃
0 I

]
; O� =

[
�
0

]
;

OC = [C 0]; Õ� = [�̃2; : : : ; �̃r+1]; OX k =
[
xk
zk

]
: (18)

The above formulation when used on the jacketed CSTR
de8nes the augmented state-space matrices (in continuous
time) as

A=



−q− �	(x2) 	(x2)

(1 + x2s=�)2
0

��	(x2) −q− �+ ��	(x2)x1s
(1 + x2s=�)2

�

0 ��1�2 �1(qcs − ��2)


 ;

B=




0

0

�1(x3f − x3s)


 ; C =

[
0 1 0

0 0 1

]
; (19)

OA=




−q− �	(x2) 	(x2)(
1 + x2s

�

)2 0 0 (x1f − x1s)

��	(x2) −q− �+ ��	(x2)x1s(
1 + x2s

�

)2 � 0 (x2f − x2s)

0 ��1�2 �1(qcs − ��2) �1qcs 0

0 0 0 1 0

0 0 0 0 1



;

OB=




0

0

�1(x3f − x3s)
0

0



; OC =

[
0 1 0 0 0

0 0 1 0 0

]
: (20)

The state transition, input and output matrices for the
discrete model can be obtained from the discretization of
the continuous-time system. The state estimator uses an in-
put step disturbance model, and for this particular example,

we have chosen the jacket feed temperature and the reac-
tor feed ;ow rate as the appended states. The input distur-
bance model, as opposed to an output disturbance model,
must be chosen in order to stabilize open-loop unstable pro-
cesses (Muske & Rawlings, 1993). Good state estimation
is assured only when the disturbance structure assumed in
the model corresponds with the e4ects of the actual dis-
turbances a4ecting the plant. Since there are two measured
outputs (reactor temperature x2 and jacket temperature x3),
we are restricted to two appended disturbance states in the
process model. The maximum number of appended distur-
bance states is equal to the number of measurements in the
system (Kozub & MacGregor, 1992). The reason for choos-
ing jacket feed temperature as the appended state is to re-
ject the e4ect of disturbances in a manner similar to the use
of an inner=secondary loop in cascade control. The choice
of reactor feed ;ow rate as an augmented disturbance en-
ables us to obtain unbiased state estimates for the reactor
temperature in the presence of the disturbances in the re-
actor feed ;ow rate, reactor feed concentration and reactor
feed temperature. The e4ect of disturbances in the reactor

feed temperature or concentration on the estimate of reactor
temperature is o4set by including their e4ects in the e4ect
of the disturbance state (reactor feed ;ow rate). This means
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that the reactor feed ;ow rate estimate will not be at its true
value, but the reactor temperature estimate will be unbiased.
This is because the e4ect of the true disturbances is han-
dled by the disturbance state, which provides an additional
degree of freedom. The choice of augmented states used to
model disturbances was found to be optimal for the sets of
actual disturbances that a4ected the plant in the simulations
performed. Other disturbance models were tested, though
results are not presented in the manuscript, and the perfor-
mance of the estimation and control system was poorer.
Augmenting the system with a disturbance vector results

in the inclusion of states that are uncontrollable and makes
the augmented system non-stabilizable. Since the augmented
states are observable, so we can design an observer to esti-
mate and remove the e4ect of these states on the system. The
input and the state target vectors (xs and us) that remove the
step disturbance at steady state and maintain the steady state
output at the desired output (yt) can be determined from the
output target vector by the following quadratic program:

min
[xs us]T

* = (yt − Cxs)TQs(yt − Cxs) (21)

s:t: [I − A− B− ˆ̃B]
[

OX s
us

]
= 0:

umin6 us6 umax

(22)

The above quadratic formulation will lead to a feasible
solution as our formulation has only the reactor temperature
in the control objective function.

3.4. “Classical ” cascade control formulation

The MPC-based cascade strategy will be compared with
“classical” cascade control designed using the state-space
approach presented in Russo and Bequette (1997). They
have shown that the traditional simulation methods based
on series or parallel input=output relationships should not be
used for open-loop unstable processes, as the true behavior
of the process is not captured. An IMC-based feedback con-
trol system design procedure (Morari & Za8riou, 1989) is
used for the outer loop and a proportional controller is used
in the inner loop. We emphasize that the conventional cas-
cade control tuning procedure based on closing and tuning
the inner loop 8rst and then the outer loop cannot be used
for our process, since closing the inner loop alone does not
stabilize the system. In e4ect, we need to ‘close both loops
simultaneously’ to rationally design a cascade controller for
this system.We employ a proportional controller in the inner
loop, and design the outer-loop controller based on knowl-
edge of the dynamics of the system with the inner loop be-
ing closed. The outer-loop process model is developed us-
ing the three-state process and the inner-loop proportional
controller, and the IMC-based feedback controller design
procedure for unstable systems is used on the outer loop. A
setpoint 8lter is used to remove the overshoot that results
from the ISE-optimal design procedure. Although the result-
ing controllers are slightly more complex than standard PID,

we feel that the design procedure is more transparent and
less arbitrary, and yields better results than other PID con-
troller tuning procedures. It should be noted that the unstable
plant imposes limitations on the disturbance rejection per-
formance which can be achieved by the standard IMC-based
design. The disturbance rejection capability of IMC for sta-
ble systems can be improved by following the procedure of
Horn, Arulandu, Gombas, VanAntwerp, and Braatz (1996).
Their IMC 8lter design cancels the slow plant pole thereby
increasing the speed of response. This approach does not
provide much improvement in disturbance rejection for un-
stable systems, since + (IMC- 8lter time constant) is re-
stricted to being above a certain positive value (to avoid in-
troducing non-minimum phase characteristics in the closed
loop).

3.5. Tuning issues in MPC and Kalman 4lter

TheMPC controller has a penalty matrix on input changes
as an important tuning parameter. The tuning of the model
predictive controller was based on the following consider-
ations. The penalty matrix on Pu, S, was set at unity. In-
creasing the penalty on Pu decreases the oscillations but
the output response slows down. The penalty on u; R; was
kept zero for all calculations as increasing the penalty on
the input leads to o4set in the output response (there are no
velocity constraints for our system). The input prediction
horizon has to be at least equal to the number of unstable
poles. For the augmented state formulation, we have three
unstable poles (one from the process and other two from the
augmented states), and so an input horizon of magnitude 3
was chosen. The objective function for optimization is for-
mulated such that reactor temperature is the only state being
optimized for future control moves, so the penalty on the
jacket temperature in the objective function is zero. The for-
mulation used is di4erent from a typical “non-square” MPC
(more outputs than inputs), and avoids o4set in the output
variables.
Increasing the penalty on the reactor temperature, Q,

makes the input action fast so that the output tracks the
setpoint aggressively. The Kalman 8lter was tuned to get
an o4set free estimate. The main tuning parameter in the
Kalman 8lter is the assumed value of the state noise matrix.
Noise-free outputs were assumed to be available, and so
the error covariance for the measurement noise was taken
to be zero. The state noise matrix Gw was assumed to be
a diagonal matrix. For the case of disturbance rejection,
only the diagonal element of Gw, which corresponds to the
augmented state estimating the disturbance, has a non-zero
value. The other augmented state may have nominal value
of unity to avoid singularity. If Gw has non-zero contri-
bution for other states, then the state estimation may not
represent the true states of the plant for the disturbance re-
jection of the plant. Using a high value in Gw will give fast
convergence of the estimated state to the true state but it
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will track the true states aggressively leading to oscillations.
For the case of setpoint tracking, it was observed that the
estimated states are close to plant states if non-zero state
noise contribution was used for the measured outputs.

4. Results

The simulation results presented here are for the nonlin-
ear plant using a linear controller. The 8nite horizon MPC
approach is compared with classical cascade control (using
the IMC-based procedure) for setpoint tracking and distur-
bance rejection. The state estimator used in the MPC strat-
egy is a discrete dynamic Kalman 8lter with jacket feed
temperature and reactor feed ;ow rate as appended state.
The nonlinear plant is linearized at x2 = 2:6 (in dimension-
less units) to develop a linear model for controller design.
The manipulated variable (jacket ;ow rate) is constrained
between 0 and 1.55. The estimated states (in MPC) tracked
the true values closely in all the simulations. Consequently,
we only present the true values of the states and outputs
in our simulations. However, we do include a typical case
(Fig. 10) where we show both the estimated states and their
true values. A sampling time of 0.05 was used for the MPC
strategy. The representative set of tuning parameters used
is given below. The IMC-based feedback controller had a
8lter time constant + chosen as 0.2. The setpoint 8lter time
constant �f is chosen as �f=0:45 ∼= 2+. The tuning param-
eters for IMC-based feedback control and MPC were held
constant for all the cases studied. IMC-based feedback and
MPC are tuned for similar performance under conditions of
small setpoint changes, and these tuning parameters are then
used in the entire set of simulations. The input and output
prediction horizon used for 8nite horizon MPC is N = 3
and N1 = 10, respectively. The values used for other tun-
ing parameters (initial value of the error covariance matrix,
process noise, etc.) are given below:

P0 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 ; Gw =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 10 0
0 0 0 0 10


 ;

Q =
[
40 0
0 0

]
; Qs =

[
10 0
0 0

]
;

OR=
[
0 0
0 0

]
; S = 1; R= 0:

The input prediction horizon for the in8nite horizon case
was selected to be 12. This is the lowest input prediction
horizon that admits a feasible solution to the stabilizabil-
ity constraint of Eq. (12). The input horizon for the in8nite
horizon controller required to guarantee constrained stabi-
lizability is thus much higher than that used for the 8nite
horizon controller.

The 8rst set of simulations presented here deals with the
e4ect of unmeasured primary and secondary disturbances
and setpoint changes on the performance of the cascade
control and 8nite horizon-based state-space MPC on the
nonlinear plant. The nominal setpoint is x2 = 2:6 (which is
open loop unstable and cannot be stabilized by the inner
loop in cascade control).
Fig. 3 deals with the case of a small change in reactor tem-

perature setpoint. In this case, the performance of MPC and
cascade control is similar because the manipulated variable
does not hit the constraint. The tuning for MPC and cascade
control is based on these two sets of nominal conditions and
it will remain 8xed for the rest of the study. Fig. 4 deals
with the case of small increase in the jacket feed tempera-
ture (x3f) from −1 to −0:8. The performance of MPC and
cascade control is comparable for such a small disturbance,
since the manipulated variable is not close to constraints.
The IMC-based feedback controller provides worse dis-

turbance rejection than MPC. The long tail in x2 for cascade
control is inherent to the disturbance rejection performance
of IMC-based feedback control. As mentioned earlier, ap-
proaches that cancel the dynamics (Horn et al., 1996) cannot
be used in this situation since the CSTR is open-loop unsta-
ble. The case dealt with shows that the cascade controller
has been tuned for similar performance to MPC, for the non-
linear plant. Fig. 5 shows the response when an unmeasured
disturbance in the dimensionless reactor feed concentration
(primary disturbance, x1f) occurs at time �=1 (x1f changes
from 1 to 0.95). The presence of the appended state for the
reactor feed ;ow rate in the model for MPC results in the
estimation and rejection of the e4ect of the disturbance on
reactor concentration (not shown in the 8gure) and reactor
temperature. The appended state model results in rejection
of primary and secondary disturbances in the loop.
The response to a large disturbance in x3f from −1 to

−0:4 is shown in Fig. 6. Fig. 7 shows the response for the
case of a large setpoint change in reactor temperature x2 from
2.6 to 2.9. Cascade control performs worse in the presence
of the active manipulated variable constraints. Figs. 6 and
7 clearly show that traditional cascade control design limits
satisfactory plant operation to small disturbances and small
setpoint changes, where manipulated variable constraints are
not active. MPC using state estimation performs better in
servo and regulatory control when manipulated variable con-
straints are active, since the constraints are explicitly han-
dled in MPC structure.
Fig. 8 shows the case of large primary disturbance oc-

curring in the reactor feed ;ow rate. MPC performs better
than cascade control. The simulation results show that 8nite
horizon MPC with state estimation having appended states
in the model (appended states are disturbances in the jacket
feed temperature and disturbance in reactor feed ;ow rate) is
better than cascade control for both primary and secondary
disturbance rejections. Fig. 9 shows the rejection of multi-
ple large primary and secondary disturbances, which appear
as pulses. The unmeasured disturbance in the dimensionless
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Fig. 3. Response to a small step setpoint change in reactor temperature. Comparison of MPC with classical cascade control.
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Fig. 4. Response to a small step increase in coolant feed temperature. Comparison of MPC with classical cascade control.

coolant feed temperature (secondary disturbance) occurs at
�=1 (x3f changes from −1 to 0:4) and the change in reac-
tor feed ;ow rate occurs at �=2 (q changes from 1 to 0.91).

The x3f and q revert to their steady state values at �=3. The
response to this set of disturbances shows that cascade con-
trol performance degrades further as it stays at the satura-
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Fig. 5. Response to a small step decrease in reactor feed concentration. Comparison of MPC with cascade control.
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Fig. 6. Response to a large step increase in coolant feed temperature. Comparison of MPC with classical cascade control.
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Fig. 7. Response to a large step setpoint change in reactor temperature. Comparison of MPC with classical cascade control.
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Fig. 8. Response to a large step decrease in reactor feed ;ow rate. Comparison of MPC with classical cascade control.

tion for a longer time. This result also shows that the in8nite
horizon MPC performance is similar to 8nite horizon MPC.
The second set of simulation in Fig. 10 is a typical case

where small primary and secondary step disturbances occur
in the system at di4erent times. The unmeasured disturbance
in the dimensionless coolant feed temperature (secondary
disturbance) occurs at �= 1 (x3f changes from −1 to 0.6).

There is a step increase in reactor feed ;ow rate at �=2:5 (q
changes from 0 to 0.02), also at �=3:5 there is a step increase
in reactor feed concentration (x1f changes from 1 to 1.01).
The estimated states corresponding to reactor temperature
and jacket temperature are identical to the actual outputs
even though there is an o4set in the estimation of reactor
concentration (x1). The o4set in estimated x1 is due to the
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lack of state augmentation for x1 and x2f, leading to lack of
observability of the entire set of disturbances. All the three
disturbances cannot be estimated at the same time, since
there are only two output measurements, which restricts the
number of augmented disturbance states to two. The e4ect
of disturbance gets distributed in augmented states x4 (jacket
feed temperature) and x5 (reactor feed ;ow rate) due to the
presence of nonlinearities in the system. Inaccurate estimates
of the disturbance translates into inaccurate estimation of
the state that the disturbance a4ects and 8nally into poor
performance.

5. Conclusions

We have developed a model predictive control-based cas-
cade control strategy and applied it to an open-loop unsta-
ble CSTR. A Kalman 8lter is used to estimate the coolant
feed temperature and reactor ;ow rate disturbances, while a
QP-based optimization for the predictive controller explic-
itly handles themanipulated variable (coolant ;ow rate) con-
straints. MPC outperforms classical cascade control when-
ever the manipulated variable constraints are active. There
is an element of arbitrariness in the cascade control design,
too, since the traditional tuning method of sequentially clos-
ing and tuning loops (inner and then outer) cannot be used
for this class of open-loop unstable cascade systems. The
model predictive cascade formulation presented in the ar-
ticle would be highly recommended for the systems hav-
ing measurement lags and non-step types of disturbances.
Though we do not present the results here, we have imple-
mented our formulation on CSTR having measurement lags
and a ramp disturbance (decrease in heat transfer coeMcient
because of fouling). For both cases, the response was better
than classical cascade control.

Notation

Gw state noise dynamics matrix
Js stable eigenvalue matrix of A
Ju unstable eigenvalue matrix of A
N number of future input moves to compute
P error covariance matrix for states
qc dimensionless cooling jacket ;ow rate
Q output penalty matrix
OQ terminal state penalty matrix
Qs target tracking output penalty matrix
R input state penalty matrix
OR error covariance matrix for output noise vector
Rs target tracking input penalty matrix
S input rate of change penalty matrix
u input vector
Ou desired input vector at steady state
uN vector of N future input vectors
v zero mean, normal output noise vector

V eigenvector matrix of A
Vs stable eigenvector matrix of A
Vu unstable eigenvector matrix of A
w zero mean state, normal state noise vector
x1 dimensionless reactor concentration
x1f dimensionless reactor feed concentration
x2 dimensionless reactor temperature
x2f dimensionless reactor feed temperature
x3 dimensionless cooling jacket temperature
x3f dimensionless cooling-jacket feed temperature
y output vector
yt output target vector
zs stable modes of A
zu unstable modes of A
ẑ estimated state step disturbance vector

Greek letters

� dimensionless heat of reaction
� dimensionless activation energy
� dimensionless heat transfer coeMcient
�1 reactor to cooling jacket volume ratio
�2 reactor to cooling-jacket density heat capacity ratio
	(x2) dimensionlessArrhenius reaction rate non-linearity
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