Biofuel Cells for Portable Electronic Applications

Nick Akers President

March 29, 2007 IBE 12th Annual Meeting

Akermin History

Founded in 2003

- Technology invented at Saint Louis University by Nick Akers and Dr. Shelley Minteer
- Secured worldwide exclusive license from SLU

Seed Funding 2004

- Approximately \$600,000 from BioGenerator and SLU
- Established lab at Nidus Center
- Demonstrated proof of concept prototype
- Expanded IP position

• Series A Venture Financing, October 2005

- \$3M from Chrysalix, OnPoint, Prolog, and Arch Angel Network
- Expanded management and technical team
- Identified key market opportunities
- Delivered all technical milestones, including several world firsts

Series A.2, March 2007

- \$3.5 M from existing investors
- Continue to add management and technical skills
- Advance technology towards product introductions

Catalyst Materials Are An Essential Part of Many Industrial Processes

- Catalysts accelerate the rate of a chemical reaction, but are not changed in the reaction
 - Chemical and materials manufacturing
 - Energy conversion (i.e. fuel cells)
 - Pollution control systems
 - Production of biofuels (i.e. ethanol and biodiesel)
 - Platinum, ruthenium, palladium, nickel compounds and various metals
- Enzyme catalysts (proteins) desirable as replacements for metal catalysts
 - Renewable, environmentally benign, low cost and reaction selective
- Catalyst industry generates \$18 billion in annual sales
 - Johnson Matthey, BASF, Umicore, Proctor and Gamble, Cargill, etc.

Akermin Breakthrough in Enzyme Catalysts Has Significant Market Value

- Unique, low cost enzyme catalyst structures desirable in many chemical reactions
 - "Polymer encapsulation" provides long life and high power
- Pursuing a \$2 billion market potential in fuel cells
 - Reaction selectivity allows 100% oxidation of fuel
 - Up to 4 times energy density of current fuel cells
 - Fuel cell material costs reduced by 50%
 - Up to 5 times energy density of batteries
- Other applications exist in catalyst industry
 - Multi-billion \$ opportunity to be explored
- Initial revenues start at end 2007
 - Fuel cell revenue of \$88 million and EBIT of \$15 million in 2011

Dual Business Paths Defined to Maximize Value from Large Diverse Market

- Main focus to engineer, produce and sell portable fuel cells
 - Operate mobile electronic devices
 - Sell direct to OEMs and to end users through retail product distributors
 - Option to manufacture in-house or through contracted services
 - Provides maximum value from fuel cell applications

Opportunistically explore business alternatives outside fuel cells

- Alcohol sensors, ethanol and biodiesel production, fuel cells for transportation systems, pharmaceutical production, etc.
- Manage effort to maintain focus on fuel cell development
- Provide revenues from funded development efforts, supply of enzyme catalysts, up front license fees or long term royalties

First Application for Fuel Cells

- Integration of functionality increases
 power demand
- \$6B rechargeable battery market
- ~700 million cell phones sold per year
- Military heavily dependent on portable
 power
 - Individual soldier carries 30 lbs of batteries
 - \$56 M batteries per month in Iraq 2004
- Need and price tolerance make battery replacement viable

Biofuel Cell History and Classification

Microbial – Enzyme catalysts contained within living cells

- Long term stability through self renewal of cells
- High energy densities through complete oxidation of fuels
- Low power densities (mW/m²) due to mass transfer across cell wall
- Potential applications where size is not a constraint

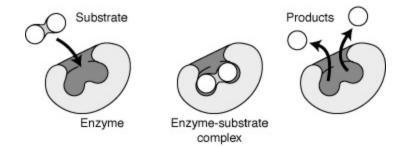
• Enzymatic – Employ isolated enzymes

- Traditionally have suffered from limited enzyme stability, ~8 hours
- Complete oxidation requires multiple enzymes
- Can achieve higher power densities (mW/cm²)
- Applicable for small portable electronics

Sea floor batteries

Tender, L. et al. Nature Biotechnology. 2002

Enzymes and Power Generation

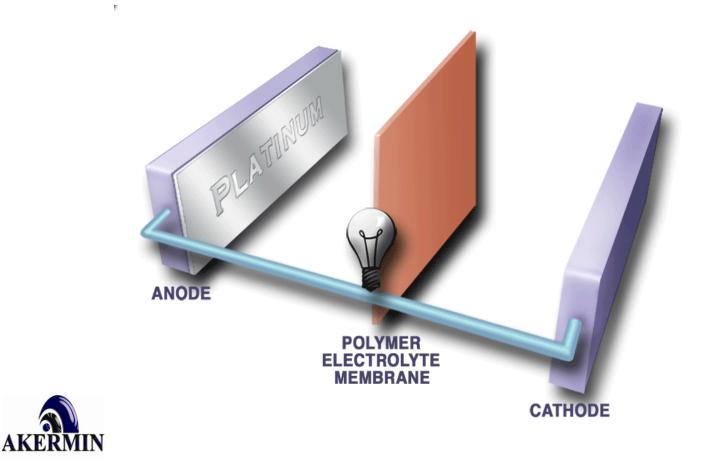

Distinguishing catalyst properties

- Increase rate of oxidation in biological systems
- Highly selective for substrate

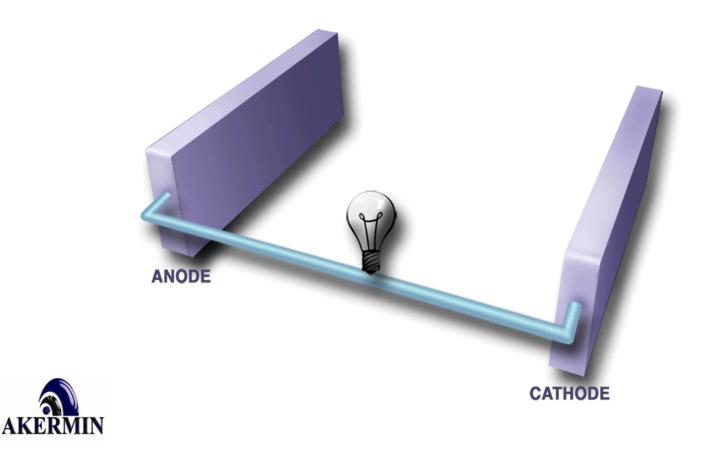
Enabling features in biofuel cell

- Oxidize fuel to release electrons and protons
- Renewable catalyst
- Wide options for fuel choice
- Selectivity can greatly simplify fuel cell operation
- Efficient oxidation increases fuel cell efficiency

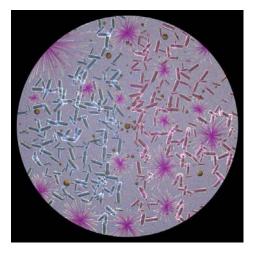
Mechanism of enzyme activity

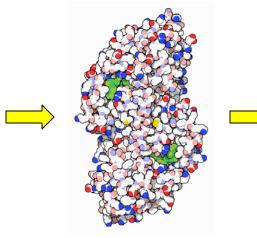


Conventional Fuel Cell


- Single unit consists of a positive and negative electrode
 - Platinum oxidizes both fuel and oxygen
 - Expensive PEM required to keep fuel flows isolated

Biofuel Cell


- Stabilized Enzyme Biofuel Cell (SEBC) operation similar to traditional fuel cells
 - Precious metal catalysts replaced by enzyme catalysts
 - Specialized separator (PEM) replaced by low cost material



Unique, Polymer Encapsulation Protects Enzyme Catalysts to Provide Long Life

- Enzymes (proteins) are attractive but fragile catalysts Harsh chemicals and high temperature cause failure

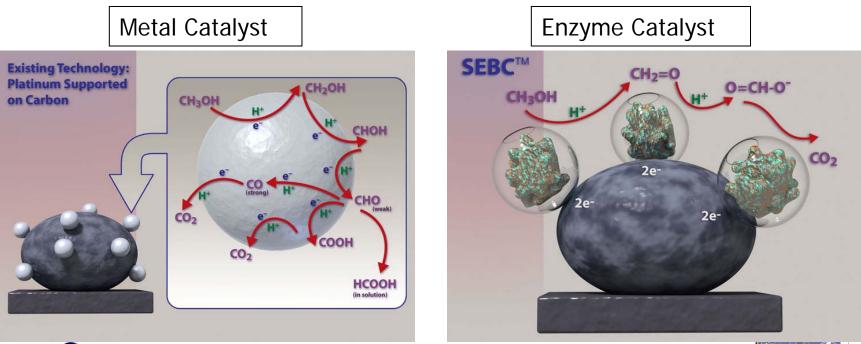
- Living Bacteria (yeast)
- Grown at low cost

- Isolate non-living enzymes
- Problem: Unprotected life of 2 weeks max.

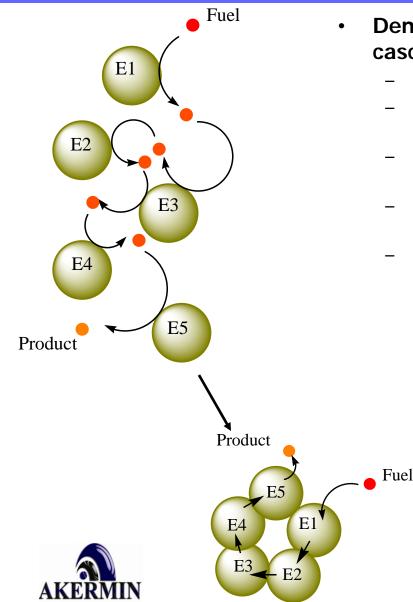
- Solution: Encase enzymes in polymer micro-environment
- Over 2 years of life
- Up to 140 degrees Celsius

Polymer Encapsulation Technology Key to Enzyme Catalyst Performance

- Encase enzymes in protective, polymer structure
 - Creates nano-meter scale, micro-environment for each enzyme
- Immobilizes enzyme for attachment to support structure
 - Maintains contact with reactants
- Protects enzyme from denaturing
 - Stabile operation for over 2 years in ethanol fuel cell
 - Stabile operation up to 140 degrees C
- Foundation for significant improvements in power density
 - Already demonstrated 15 mW/cm² in fuel cells
- Opportunity for substantial improvements in life and power density
 - Still very early in technical evolution
 - Capitalize on polymer science and biochemical engineering



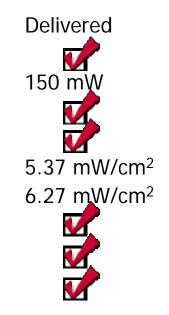
Reaction Selectivity Enables 100% Fuel Oxidation, the Key to High Energy Density


- Methanol fuel conversion with metal catalysts ~ 20%
 - Intermediate reactions and by-product formation generate heat not electricity
- Methanol fuel conversion with enzyme catalysts ~ 45%
 - Enzyme for each chemical step results in 100% fuel oxidation
 - Minimizes intermediate reactions and heat

Effectively Employing Multi-enzyme Pathways

Demonstrated strategies for employing enzyme cascades for complete oxidation of ethanol

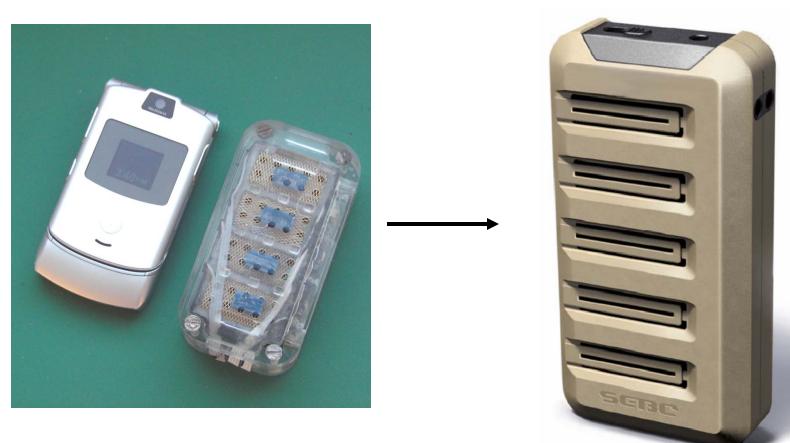
- Reproduce biologic pathways outside of living cells
- For fuel cells, this results in highest efficiency for conversion to electrical energy
- For other applications, represents opportunity for novel catalyst or synthetic processes
- Employing synthetic approaches to developing ideal microenvironments for enzyme catalysis
- Employing bio-inspired "click" chemistry to develop threedimensional enzyme scaffolds (complexes)



Achieved All Technical Milestones in Last 2 Years and Validated Design Concepts

Key Milestones:

- 15 mW/cm² power density
- 100 mW prototype
- Enzyme pilot production
- Complete oxidation scheme for ethanol
- 5 mW/cm² glucose
- 5 mW/cm² soybean oil
- Fuel tolerant immobilization membrane
- Environmental characterization
- Air breathing biocathode

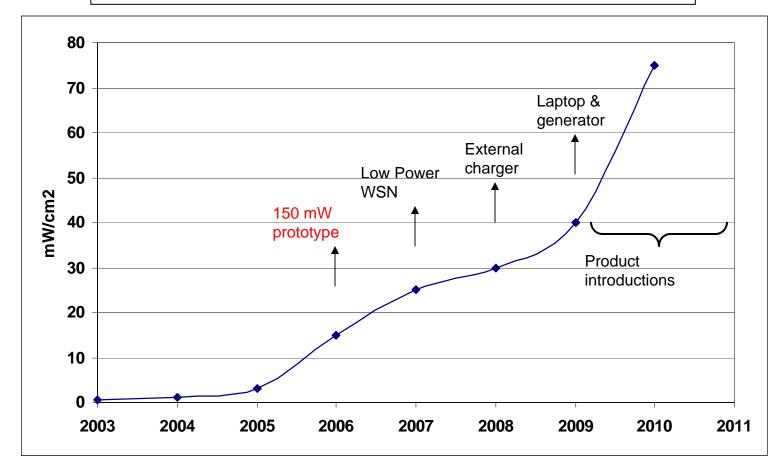

Continue to deliver technology improvements through 2007

Prototype at End of 2007 Suitable for Customer Sampling

- 1W stack + BOP
- Physical example of commercial packaging concept
- Key milestone to support 2008 funding needs

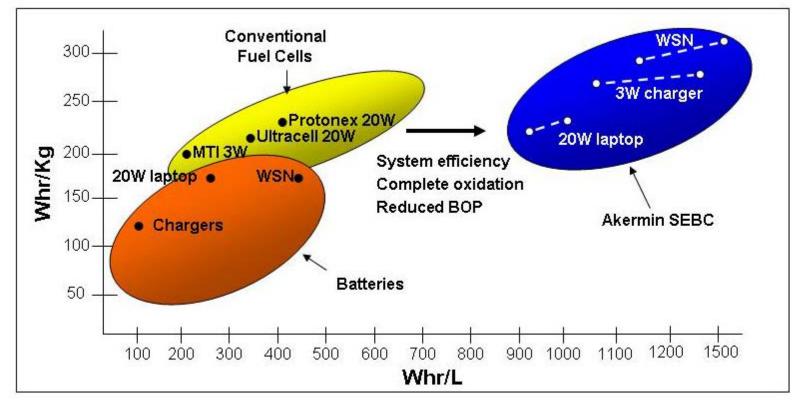
SEBCs Have Significant Advantages Over Competing Portable Power Options

Stabilized Enzyme Biofuel Cells (SEBCs)


Portable Power Source Feature	Potential SEBC Advantages	
	vs. Rechargeable Batteries	vs. Fuel Cells
Energy Density	Up to 5 times increase	Up to 4 times increase
Cost	Reduce cost per Whr by 50%	Reduce material costs by 50%
Environmental Impact	 Enzymes are renewable No disposal restrictions on enzymes as with some battery materials 	 Enzymes are renewable No disposal restrictions on enzymes as with metal catalysts

Increased Power Density Supports Penetration of New Applications

SEBC Electrode Power Density History and Goals



Projected SEBC Energy Densities Several Times Greater Than Competitive Devices

- Energy densities for current portable power systems and projected SEBC products
 - Dashed lines indicate range of SEBC performance based on assumptions for amount of fuel and BOP design

•

Focus on Devices and Users with Greatest Need for Long Runtime

Users that carry extra batteries are a key target

- Soldiers on field missions
- Field service technicians
- First responders/emergency workers
- Low power applications (under 3 watts) in first generation
 - Wireless sensor networks (WSNs) and charger power packs
 - Initiated early contacts with US military, WSN OEMs and potential retail distributors
- High power applications (over 10 watts) in second generation
 - Capitalize on ongoing improvements in enzyme catalyst power density
 - Penetrate notebook computers and portable generators
- Market segmentation is key to product definition and early adoption

Akermin Stabilized Enzyme Catalyst Technology Can Have Revolutionary Impact

- Unique polymer encapsulation enables many uses of enzyme catalysts
 - Renewable, low cost, environmentally benign and reaction selective
- Skilled management team leading the Company
- Focus on fuel cells to capitalize on benefits of 100% fuel oxidation
 - Increase energy density up to 4 times and reduce cost up to 50%
 - Potential for over 1000 Whr/liter systems
 - Operated first biofuel cell stack at 150 mW
 - Complete system prototype planned by end 2007
- Opportunistically explore catalyst applications outside fuel cells
- Initial revenues in late 2007 and 2008
 - Development contracts and sale of qualification prototypes
- SEBC product introductions in 2009
 - Revenues of \$88 million with EBIT of \$15 million in 2011

