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The increase in the scale of preparative chromatographic processes for biopharma-
ceutical applications now necessitates the development of effective optimization strategies
for large-scale processes in a manufacturing setting. The current state of the art for
optimization of preparative chromatography has been limited to single objective func-
tions. Further, there is a lack of understanding of when to use a particular objective, and
how to combine and/or prioritize mutually competing objectives to achieve a true optimal
solution. In this paper, these limitations are addressed by using a physical programming–
based multiobjective optimization (MO) strategy. A set of Pareto solutions are first
generated for model protein separations for both bi-objective (production rate and yield)
and tri-objective (production rate, yield, and product pool concentration) scenarios.
These Pareto frontiers are used to visualize the Pareto optimal surface for different
components with various purity constraints and provide a qualitative framework to
evaluate the optimal solutions. A physical programming–based multiobjective framework
is then used for the quantitative evaluation of the optimal solutions for tertiary protein
mixtures. This enables the interpretation of results for different sets of hierarchy and
priority values assigned to the objective functions and constraints for the chromato-
graphic processes. This novel multiobjective optimization approach computes the trade-
offs between the conflicting design objectives and helps in choosing an operating condi-
tion from infinite feasible optimal solutions. The combined quantitative and visualization
framework presented in this paper sets the stage for the development of true optimal
solutions for complex nonlinear preparative separations. © 2005 American Institute of
Chemical Engineers AIChE J, 51: 511–525, 2005

Introduction
The need for the development of effective optimization

strategies for large-scale chromatographic processes is becom-
ing more pressing as the scale of biopharmaceutical applica-

tions continues to increase. The optimization of preparative
chromatography has commonly been carried out using several
different optimization strategies. For typical preparative chro-
matographic applications, various objectives have been used
for the formulation of the optimization problem (Table 1).
Although a wide variety of objectives have been used, the most
common objective function to date has been the production
rate, which is defined as the amount of product produced at a
given level of purity per unit time, per unit volume of station-
ary phase material. Natarajan et al. (2000a) optimized the
production rate using yield as a constraint. Although this
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method improved the production rate and satisfied the yield as
a hard constraint, it provides minimal flexibility to those who
want to use yield as a soft metric while simultaneously satis-
fying several other lower or higher priority objectives. Felinger
and Guiochon (1996) suggested using the product of produc-
tion rate and yield as an alternative objective function. Even
though this approach tended to improve the yield, it did so at
the cost of significant reductions in the production rate.

In preparative scale chromatographic processes, there are
often several competing objectives (such as production rate,
yield, product pool concentration, and economics), which re-
quire a trade-off to ensure a satisfactory design. Further, in
these problems it will be unlikely that the same values of
design variables (flow rate, feed load, and salt concentration)
will simultaneously result in the best possible values for all the
objectives. The currently available strategies for optimization
of these systems do not readily lead to truly desired solutions
because they are either based on a single-objective function
and/or are suited for a single product optimization. Moreover,
there is a lack of understanding of when to use a particular
objective and how to combine and/or prioritize these mutually
competing objectives to achieve a true optimal solution.

Multiobjective optimization (MO) is a systematic method for
dealing with competing objectives and performing these trade-
offs (Hwang et al., 1980). MO methods can be classified into
four categories:

(1) The minmax formulation (Tseng and Lu, 1990) is one in
which the designer does not provide any preferences and di-
rectly minimizes the overall maximum value.

(2) Weighted sum, goal programming, physical program-
ming, and lexicographic approaches—methods in which the
designer provides preference information a priori (Messac,
1996; Tamiz et al., 1988).

(3) Weighted sum, e-constraint, physical programming, and
others—methods that are based on designers’ a posteriori in-
formation on the preferences pertaining to the objectives
(Hollingdale, 1978; Ko and Moon, 2002).

(4) Interactive methods, which rely on progressive articula-
tion of preference information (Benayoun et al., 1971; Messac,
1996).
Although multiobjective optimization has been used for nu-
merous applications (Benayoun et al., 1971; Clark and West-
erberg, 1983; Messac, 1996), there has thus far been no effort
to investigate its application for preparative chromatographic
processes.

The multiobjective optimization approach used in the current
work is unique in that it uses a physical programming method,
which enables the designer to formulate the product optimiza-
tion problem in terms of physically meaningful terms and
parameters. Physical programming provides a simple and flex-
ible method for formulating and visualizing design optimiza-
tion problems (Messac, 1996; Messac and Chen, 2000). In
physical programming, the designer specifies ranges of differ-
ent degrees of desirability (such as desirable, tolerable, unde-
sirable, etc.) for each design objective, rather than physically
meaningless weights for each objective. Physical programming
provides a powerful tool for resolving trade-offs during the
optimization and eliminates the need to find weights for each
objective or for the scaling of the objectives, so that no objec-
tive numerically dominates. The physical programming (PP)
approach uses both design objectives (that is, soft metrics) and
hard constraints. It provides an optimal solution based on the
preferences specified for soft metrics.

In the current work, we have formulated the optimization
problem for linear gradient chromatography within a multiob-
jective framework using a twofold approach to assess the
sensitivity and geometry of the optimal region and to determine
the optimal results using various preferences and/or prioritiza-
tion of objectives. This work is carried out with simulation
results for binary and tertiary protein mixtures for proof of
concept. A set of Pareto solutions is first generated for model
protein separations using a novel normalized constraint method
(Ismail and Messac, 2002). These Pareto frontiers are used to
visualize the Pareto optimal surface for different components
with various purity constraints and provide a qualitative frame-
work to evaluate the various optimization scenarios for a linear
gradient chromatography. A PP-based multiobjective frame-
work is then used for the quantitative evaluation of the optimal
linear gradient conditions for both binary and tertiary protein
feed mixtures. This enables the interpretation of results for
different sets of hierarchy and priority values assigned to the
objective functions and constraints for the chromatographic
processes. The presented approach circumvents the issue of
choosing one objective function and allows prioritization of the
objectives (that is, design metrics) and constraints.

Theory

This section presents the multiobjective optimization and
physical programming concepts used in this work.

Table 1. Various Objectives Used for Preparative Chromatography

Objectives Desirability References

Production rate Maximization Natarajan et al. (2000), Gallant et al. (1996), Felinger and
Guiochon (1992), Golshan-Shirazi and Guiochon (1991),
Janedra et al. (1998)

Yield Greater than, fall in a
particular range

Jandera (1998)

Production rate times yield Maximization Felinger and Guiochon (1996)
Purity Greater than Many sources
Solubility Less than Gallant et al. (1996), Natarajan et al. (2002)
Production cost Minimization Felinger and Guiochon (1994)
Efficiency Maximization Golshan-Shirazi and Guiochon (1990)
Specific production rate Maximization Felinger et al. (1993)
Column design parameters (length

and particle diameter)
Minimization Felinger and Guiochon (1992)

Resolution optimization factor Maximization Luo and Hsu (1997)
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Multiobjective optimization

Definitions
(1) Multiobjective optimization. A multiobjective optimiza-

tion is a problem involving several competing objectives and
constraints. The solution of this problem is considered the best
solution that satisfies the conflicting objectives. Other com-
monly used terms in the literature for multiobjective optimiza-
tion are multicriteria optimization, multidecision optimization,
and vector optimization.

(2) Pareto solution. A Pareto solution is one where any
improvement in one objective can take place only at the cost of
another objective. A Pareto set is a set of Pareto-optimal
solutions.

(3) Design parameters. A design parameter is a parameter
over which the designer has direct control (such as gradient
slope, feed load, and flow rate). Other terms used in the
literature for design parameters include decision variables,
design variables, or decision parameters.

(4) Design metric. A design metric refers to an objective
measure of a design attribute. Other commonly used terms are
objective functions, design criterion, figure-of-merit, goal, and
performance metric. Design metrics include production rate,
yield, and product pool concentration. In the current work, the
variable �(x) denotes the vector of design metrics and is related
to the design parameters using simulations obtained from a
general rate model of chromatography described elsewhere
(Nagrath et al., 2004). In this paper’s physical programming
formulation, yield, and product pool concentration are included
as soft design metrics.

(5) Design constraint. A design constraint indicates the
lower or upper bounds in the design metrics or design param-
eters.

(6) Anchor value. The value obtained for a particular de-
sign metric if that design metric alone is optimized, given the
bounds on the design parameters.

Pareto Concept. Figure 1 presents a schematic of a Pareto
set for a bi-objective problem. If design metric �1 alone is
optimized (maximized), then the optimal value is �*1 (shown as
point P1). Similarly, if design metric �2 alone is optimized then
the optimal value is �*2 (shown as point P2). Here �*1 and �*2
are the anchor values for design metrics �1 and �2, respec-

tively. The ideal or utopian solution (�*1, �*2), obtained by the
individual maximization of the objective functions, is generally
not a feasible solution of the multiobjective optimization prob-
lem. As seen in Figure 1, the arc joining points P1 and P2

defining the boundary of the feasible space is the efficient
Pareto frontier. That is, for every point on arc P1–P2, it is not
possible to improve both objectives simultaneously. If one
objective is improved, it must be at the expense of the other.
Points on the arc are often referred to as Pareto points and are
the candidates of choice in the process of multiobjective opti-
mization. In engineering applications, the designer is often
presented with several Pareto optimal points, representing al-
ternative designs, from which one selects the value that offers
the best trade-off among multiple objectives. In this work we
use Pareto plots to qualitatively evaluate various optimization
scenarios for linear gradient chromatography of protein mix-
tures.

Normal constraint method for generation of Pareto
frontiers

Herein, the Pareto frontiers were generated using a novel
normalized normal constraint (NNC) method developed by
Ismail and Messac (2002). NNC possesses favorable properties
compared with those of other methods (such as weighted sum)
and redresses numerical scaling deficiencies of generic mul-
tiobjective methods. The development of Pareto frontiers pro-
vides a qualitative framework to assess the optimal solution
possibilities and allows the designer to investigate the interplay
between the design metrics.

Physical programming

Physical programming is a method that uses physically mo-
tivated information from the design engineer as inputs to for-
mulate an optimization problem reflecting the designer’s pref-
erences. In the physical programming method, these
preferences are directly expressed in the aggregate objective
function and the steps involved in this approach are depicted in
Figure 2.

Design Metrics. The design metrics are denoted by the �i

variables, which are components of the vector � � (�1, . . . ,
�m). Design metrics may be quantities that the designer wants
to minimize; maximize; take on a certain value (goal); fall in a
particular range; or be less than, greater than, or equal to
particular values. The industrial manufacturer can define a
preference with respect to each design metric by providing
certain numerical values. The design metric then becomes part
of an aggregate objective function (AOF) to be minimized or to
be treated as an inequality or equality constraints on the ag-
gregate objective function.

Objectives and Class Functions. In the physical program-
ming method, objectives can be expressed with respect to each
design metric using different Classes. Each Class consists of
two cases, Hard and Soft, referring to the “sharpness” of the
preference. The desired behavior of a generic design metric is
described by one of eight sub-Classes: four Soft and four Hard,
as shown in Table 2a. For each of these Classes, a Class
function is formed that provides the means for a designer to
express the spectrum of preferences for a given design metric.
The Class functions provide information that is deliberately
imprecise. By design, the utopian value of a Class function is

Figure 1. Pareto Frontier for a general bi-objective
space.

AIChE Journal 513February 2005 Vol. 51, No. 2



zero. All Soft Class functions become constituent components
of the aggregate objective function. Figure 3 qualitatively de-
picts different types of Soft Class functions. The value of the
design metric under consideration, �i, is on the horizontal axis,
and the function that will be minimized for that objective,
Pi(�i), hereby called the Class function, is on the vertical axis.
There are six ranges for each generic design metric for Classes
1S and 2S, 10 ranges for Class 3S, and 11 for Class 4S. To
illustrate this, consider the case for Class 1S. The ranges are
defined in order of decreasing preference as follows:

● Highly Desirable (�i � �i1): An acceptable range that is
high desirable.

● Desirable (�i1 � �i � �i2): An acceptable range that is
desirable.

● Tolerable (�i2 � �i � �i3): An acceptable, tolerable range.
● Undesirable (�i3 � �i � �i4): A range that, although

acceptable, is undesirable.
● Highly Undesirable (�i4 � �i � �i5): A range that, al-

though still acceptable, is highly undesirable.
● Unacceptable (�i � �i5): The range of values that the

generic objective may not take.
The parameters �i1 through �i5 are physically meaningful

constants that are specified by the designer to quantify the
preferences associated with the ith design metric. The corre-
sponding Class functions map design metrics into nondimen-
sional, strictly positive real numbers. This mapping, in effect,
transforms design metrics with disparate units and physical
meaning onto a dimensionless scale through a unimodal func-
tion. Figure 3 illustrates the mathematical nature of the Class
functions and shows how they allow designers to express the
ranges of preferences for different classes. Preferences regard-
ing each design metric are treated independently, allowing the
inherent multiobjective nature of the problem to be preserved.
The value of the Class function for each design metric governs
the optimization path in objective space.

Physical Programming Formulation. Figure 4 illustrates
various mappings that take place between design parameters
and the aggregate objective function in physical programming.
The first part of the mapping is between design parameters
(also defined as the decision variables) and design metrics. The
mapping between design parameters (such as feed load, flow
rate, salt gradient) and design metrics is carried out using
appropriate chromatographic models described elsewhere (Na-
grath et al., 2004). The “goodness” of a design metric, or
Pi(�i), is dictated by the preference function assigned by the
designer. Pi(�i) depends on the value of a design metric (�i),
on the class type (Table 2a) assigned to the design metric, and
on the range of preference values associated with the design
metric (such as �i1 to �i5). The class functions are obtained
using the designer preferences on the objective function. The
next step involves the formation of an aggregate objective

Figure 2. Physical programming approach for design
and optimization.

Table 2a. Characterization of Classes

Soft Hard

Class 1S Smaller-is-better: minimization Class 1H Must be smaller: �i � �i,max

Class 2S Larger-is-better: maximization Class 2H Must be larger: �i � �i,min

Class 3S Value-is-better Class 3H Must be equal: �i � �i,min

Class 4S Range-is-better Class 4H Within range: �i,min � �i � �i,max

Table 2b. Characterization of Chromatographic Design Metrics into Different Classes

Design Metric Class Functions Desirability

Production rate Class 2S Larger is better:
Maximization

Production rate times yield Class 2S Larger is better:
Maximization

Product pool concentration Class 2S Larger is better:
Maximization

Solubility constraint Class 1H Must be less than
Yield Class 2S or Class 2H Maximization or must be

greater than
Purity Class 2H Larger is better:

Maximization
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function, which is the sum of all the class functions. After the
completion of the mapping, the aggregate objective function is
then minimized using nonlinear programming. The physical
programming problem is represented mathematically as

J � min
x

P���x�� � � 1

nsc
�
i�1

nsc

Pi��i�x���
subject to

�i � �i5 �for class 1S design metrics�
�i5 � �i �for class 2S design metrics�
�i5L � �i � �i5R �for class 3S design metrics�
�i5L � �i � �i5R �for class 4S design metrics�
�i � �iM �for class 1H design metrics�
�i � �im �for class 2H design metrics�
�i�x� � �i� �for class 3H design metrics�
�im � �i�x� � �iM �for class 4H design metrics�
xjm � xj � xjM �for design var. constraints�

where �im, �iM, xjm, and xjM represent maximum and minimum
values, and the �iv defines the equality constraints; the range

Figure 3. Soft class function ranges for the ith generic design metric.
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limits are provided by the designer; the number of soft design
metrics that the problem constitutes is represented by nsc.

The previous discussion provides a cursory presentation of
physical programming, which is sufficient to understand how it
is applied. For more details the interested reader is invited to
examine the following references: Messac (1996, 2000), Mes-
sac and Chen (2000), and Messac et al. (1996, 2000). Not only
is physical programming a powerful method for multiobjective
optimization, but it can be readily implemented in MATLAB.

Physical Programming Visualization

As discussed previously, the physical programming para-
digm calls for the designation of ranges of different degrees of
desirability for each design metric. The versatility of this
approach also stems from the fact that it aids in simultaneously
visualizing a large number of design metrics. The numerical
values of the objective functions are mapped to account for the
a priori–expressed preference of the designer and a bar graph
is used to represent the instantaneous value of each design
metric (Figure 5). This facilitates the dynamic assessment of
the effect of the preference specifications on the objectives as
well as the complex interplay of these objectives. Figure 5
shows the visualization process for a representative case of the
gradient separation of a binary mixture (�-chymotrypsinogen
A and ribonuclease A). In the color-coded background on the
figure, a bar graph (on the right) is used to represent the
instantaneous value of each design metric in real time. The
figure is subdivided into nine horizontal sections that corre-
spond to regions of differing degree of desirability. Each sec-
tion is then color coded according to the desirability level and
is labeled appropriately. For the case presented here, there are
three design metrics (production rate, yield, and solubility

constraint). For clarity, visualization is shown for production
rate and yield. As seen in the figure, at the 50th optimization
run the production rate is in the highly undesirable region and
yield is in the highly desirable region. However, at the end of
the 100th iteration, the values of both production rate and yield
are between the desirable and tolerable regions. [Note: because
a hybrid model is used for these simulations, the computation
time is minimal (Nagrath et al., 2004).] Clearly, this approach
permits the visualization of the complex interplay between
production rate and yield. Although results shown here include
only two design metrics, the visualization of design metrics in
this form can be easily carried out for any number of design
metrics.

Results and Discussion

In chromatographic separations, the desired objectives
and/or constraints can be described according to a hierarchy
and assigned different levels of priority. Thus, the optimization
problem can be posed as a wide-range multiobjective optimi-
zation, which leads to the development of a systematic method
for describing the design objective preferences and constraint
handling. For example, in protein chromatography high recov-
ery yields are often required, and thus yield should be included
either as a constraint or as a component of the aggregate
objective function. Further, it is often desirable to minimize
dilution during the chromatographic process and to have a high
product pool concentration (subject to solubility constraints).
Consequently, we investigate the effect of the product pool
concentration as one of the additional design metrics.

In the current work, all of the optimization results use hybrid
models described elsewhere (Nagrath et al., 2004) for model
development. Briefly, transport and isotherm parameters are

Figure 4. Physical programming mappings.

516 AIChE JournalFebruary 2005 Vol. 51, No. 2



experimentally determined using techniques previously devel-
oped in our group (Gadam et al., 1992; Natarajan et al., 2000b).
The resulting parameters are then used in the physical model
(the general rate model of chromatography in concert with the
nonequilibrium steric mass action adsorption isotherm) for
parametric simulations to generate data for n-dimensional re-
sponse surfaces that relate the production rate, yield, purity,
and product pool concentration to the other parameters of the
system (such as feed load, flow rate, salt gradient). These
simulations are performed on a high-speed parallel computing
cluster at Rensselaer. The resulting data sets of design metrics
for various design parameters were then used to develop an
empirical model for each feed component in this system. A
multilayer artificial neural network (ANN) model is then used
to represent these response surfaces. The final configuration of
the resulting ANN-based hybrid models is: 16 � 11 � 8 � 4
for the first component; 14 � 12 � 9 � 4 for the second
component; and 16 � 11 � 8 � 4 for the third component.
ANN topology optimization and learning procedure used for
the current study is explained elsewhere (Nagrath et al., 2004).
This ANN model is used herein for multiobjective optimiza-
tion.

As discussed previously, physical programming can be for-
mulated in any multiobjective optimization framework (either
a priori, a posteriori, or interactive methods). Because we first
use Pareto frontiers in a qualitative analysis and then use them
for progressive articulation of preferences, our approach falls

under the category of interactive methods. As described in the
theory section, physical programming requires characterization
of design metrics into different classes. Table 2a presents the
general classes possible for any optimization problem. The
characterization of various design metrics relevant to chro-
matographic processes and used in the current work is pre-
sented in Table 2b.

First, we investigate the gradient separation of a binary
protein system (�-chymotrypsinogen A and ribonuclease A).
We then examine a tertiary mixture (�-chymotrypsinogen A,
ribonuclease A, and a later eluting artificial component) for
both bi-objective and tri-objective cases at different levels of
purity. In all of the cases examined herein, the solubility
constraint was satisfied using a hard constraint (Class 1H) on
the maximum solute concentration (set to be �5 mM).

Binary systems

This section presents the optimization results for the linear
gradient separation of a binary protein mixture (�-chymotryp-
sinogen A and ribonuclease A). Figure 6 shows the Pareto
frontiers of both the early and later eluting components. As
seen in the figure, the trade-off between production rate (de-
noted as �1) and yield (denoted as �2) becomes increasingly
pronounced at higher production rates for both components. It
can also be seen that the Pareto frontiers have a sharp decrease
for the later eluting component. This exemplifies that the

Figure 5. Physical programming visualization window.
The top four sections permit the visualization of design metrics that are minimized, whereas the bottom four sections are used for visualizing
design metrics that are maximized. The middle section is common to both maximization and minimization of design metrics.
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optimization of production rate is more difficult for a later
eluting component compared to that of an early eluting com-
ponent. This is because at higher production rates for the later
eluting component, only a small amount of change in produc-
tion rate can be attained for a large change in yield. Further-
more, processes operated at a higher production rate, where the
later eluting compound is the desired product, may not be
robust because small process variability may lead to a large
decrease in the yield.

Tertiary systems

To examine a more complex separation, a ternary mixture
consisting of �-chymotrypsinogen A, ribonuclease A, and a
later eluting artificial component (Nagrath et al., 2004) was
investigated. We first examine the Pareto frontiers of all three
components at the 95% purity level to obtain qualitative infor-
mation, and then use physical programming for their optimi-
zation. The Pareto frontiers can be used to infer the design
objective preference range and qualitative information about
the design metrics, which are then used in physical program-
ming to specify the preferences for the design metrics. The
effect of purity as an independent design parameter is further
investigated by observing its effect on the later eluting com-
ponent. Finally, we investigate the effect of the product pool
concentration as one of the additional objectives for the third
component. This is carried out first for a bi-objective scenario
and then for a tri-objective scenario.

Tertiary mixture for bi-objective system at a fixed purity

Figure 7a presents the Pareto frontiers of a tertiary mixture
(ribonuclease A, �-chymotrypsinogen A, and a later eluting
artificial component) at 95% purity. The first component is the

early eluting ribonuclease A, the second component is �-chy-
motrypsinogen A, and the third component is the later eluting
artificial component. It is important to note that the Pareto
frontier of the second component is below the frontiers of the
other components because it experiences overlap from both the
first and third components. It is also worth noting that the
“anchor values” of the production rate for the first and second
components occur at significantly higher yields than those for
the third component. Again, the anchor value is defined as the
value obtained for a particular design metric if that design
metric alone is optimized, given the bounds on the design
parameters (such as flow rate and gradient slope).

To explore these scenarios in more detail, it is instructive to
examine the outlet concentration profiles from the simulations.
Figures 7b–d show the outlet concentration profiles for the
scenarios in which the component of interest is the first, sec-
ond, and third, respectively. In each of the panels b–d of Figure
7, the outlet concentration profiles are depicted for two oper-
ating conditions, one in which the desired component has a
production rate at a reasonable yield (Case 1) and the other in
which the desired component has a high production rate at low
yield (Case 2). The operating conditions for these six cases
(two for each component) are indicated in Figure 7a and
presented in Table 3. Cases 11P and 12P are for scenarios
where the desired component is the first component. In partic-
ular, Case 11P is at a relatively high yield and low production
rate; and Case 12P is for a high production rate and low yield.
From Figure 7b, it can be seen that at the high feed loading
(12P), the front of the first component becomes sharper and its
maximum concentration increases as a result of sample dis-
placement. However, there is a concomitant increase in overlap
between the first and second components, which leads to a
decrease in yield.

In Cases 21P (relatively high yield) and 22P (high produc-
tion rate), the desired component is the second component. As
seen in Table 3, the optimal values of the design metrics
(production rate and yield) and parameters (flow rate, gradient
slope, and feed load) are low for this case when compared with
the optimization results for the first and third components (at a
constant purity constraint of 95%). Again, this is because the
overlap of the second component with the other two solutes and
the low separation factor between individual components limits
the column loadings to moderate values. In addition, as seen in
Figure 7c, the maximum concentrations of solutes are lower
than those for the cases shown in Figures 7b and d.

When the third component is desired, for cases 31P (high
yield) and 32P (low production rate), a sharp decrease in the
yield is observed at higher production rates (Figure 7a). As
seen in the outlet concentration profiles in Figure 7d, the tailing
of the second component leads to a reduced production rate of
the third component. The optimal design parameters (flow rate,
gradient slope, and feed load) when the third component is
desired at high yield (31P) are lower than those obtained when
the first component is desired (11P). This is because the sep-
aration factor between the second and third components is
lower than that between the first and second components, thus
restricting the column loading to moderate values. Further,
sample displacement effects increase the yield of component 1,
but not that of component 3.

To investigate the interplay between various design metrics
in this system we will focus the rest of the discussion on the

Figure 6. Pareto frontiers for two model proteins, �-chy-
motrypsinogen A and ribonuclease A on 90 �m
FF Sepharose stationary phase.
Column conditions are: diameter 1.6 cm; length 10.5 cm. Feed
conditions are: ribonuclease A and �-chymotrypsinogen A at
0.7 mM each. The 1st component is the early eluting ribonu-
clease A and the 2nd component is the later eluting �-chy-
motrypsinogen A. The triangles and the circles are the Pareto
solutions for optimization of the early and later eluting com-
ponents, respectively.
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optimization of the third component. The reason for this is that
there is a larger trade-off region for this component (Figure 7a)
and the sharp Pareto frontier makes production rate optimiza-
tion difficult compared to that of yield.

The effect of purity constraints
In this section we investigate the effect of purity as an

independent parameter on the optimal values of design metrics
and design parameters of the later eluting artificial component.

Figure 7. Pareto frontiers and outlet concentration profiles for a tertiary mixture (�-chymotrypsinogen A, ribonucle-
ase A, and artificial component) on a 90 �m FF Sepharose stationary phase.
The 1st component is the early eluting ribonuclease A, the 2nd component is the middle eluting �-chymotrypsinogen A, and the 3rd component
is the later eluting artificial component. The triangles, stars, and squares are the Pareto solutions for the optimization of the first, second, and
later eluting components, respectively. Outlet concentration profiles for the tertiary mixture for the six cases indicated in (a) are shown in (b),
(c), and (d) when the component of interest is the first, second, and the third component, respectively. Column conditions are: diameter 1.6
cm; length 10.5 cm. Feed conditions are: ribonuclease A, �-chymotrypsinogen A, and the artificial component at 0.5 mM each. The average
separation factor between ribonuclease A and �-chymotrypsinogen A is 1.55, and is 1.35 between �-chymotrypsinogen A and an artificial
eluting component (Nagrath et al., 2004).
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The Pareto frontiers at three different purities—91, 95, and
99% for a later eluting component—are shown in Figure 8a. As
seen in the figure, the “anchor value” of the production rate for
the later eluting component deceases with increasing purity. In
addition, there is an overall increase in the trade-off region
(Pareto optimal) of design metrics at the higher-purity con-
straints. Because the Pareto frontier at 99% purity is “below”

the frontiers of the other components, increasing the purity
constraint clearly results in a decrease of both the optimal yield
and production rate. Interestingly, the 99% purity Pareto fron-
tier has a noticeable difference when compared with Pareto
curves at other purities: there is a continuous sharp decrease in
yield from the low to high production rate regions. In contrast,
in the other Pareto frontiers yield generally decreases at a

Table 3. Optimal Design Parameters for Various Cases Shown in Figure 7a

Desired
Component Case

Optimal Production Rate
(mmol min�1 mL�1)

Optimal
Yield
(%)

Optimal Flow
Rate Fl*
(mL/min)

Optimal Gradient Slope
GS*

Optimal Feed
Load TF*

(DCV)(mM/DCV) (mM/min)

First 11P 36.92 93.68 4.59 1 0.7 13.37
12P 39.88 81.52 4.59 1 0.7 16.62

Second 21P 13.68 90.79 3.21 1 0.49 7.26
22P 22.26 76.04 4.59 1 0.7 9.46

Third 31P 17.27 91.24 4.03 1 0.62 7.3
32P 24.12 43.84 4.59 1 0.7 19.98

Note: DCV denotes the dimensionless column volume.

Figure 8. (a) Pareto frontier of the later eluting component at three different purities in a tertiary mixture (�-
chymotrypsinogen A, ribonuclease A, and the later eluting artificial component) on a 90 �m FF Sepharose
stationary phase.
The triangles, squares, and circles are the Pareto solutions for optimization at 91, 95, and 99% purity constraints, respectively. Variations of
the design metrics production rate and yield with feed load at 91 and 95% purity constraint for the later eluting component are shown in (b)
and (c), respectively. Column conditions are: diameter 1.6 cm; length 10.5 cm. Feed conditions are: ribonuclease A, �-chymotrypsinogen A,
and the artificial component at 0.5 mM each.

520 AIChE JournalFebruary 2005 Vol. 51, No. 2



relatively slow rate in the low to medium production rate
regions and exhibits a sharp decrease only under high produc-
tion rate conditions.

The physical programming optimization results for various
preferences and preferentially desired design metrics for the
99% purity scenario are presented in the top section of Table 4.
The preference ranges for the physical programming optimi-
zation were selected as 2–18 (mmol min�1 mL�1) for the
production rate and 50–99.5% for the yield. The optimal values
of design metrics obtained for the base case (Case 1) are 8.44
(mmol min�1 mL�1) and 89.28% for the production rate and
yield, respectively. In Cases 2–6 higher production rate is
desired, whereas in Cases 7–10 higher yield is desired. To
increase the optimal value of production rate, the preference
values for the production rate are increased in Cases 2–3,
whereas yield preferences are maintained at a constant value.
This is achieved by increasing the flow rate and feed load. To
further increase the production rate, the preferences for the
yield are decreased in Cases 4–5 and those of the production
rate are maintained at a constant value. To achieve a higher

value of the production rate, it is not sufficient to just increase
the preferences of production rate; it is also necessary to
decrease the preferences for the yield. Accordingly, a simulta-
neous increase in the production rate preference and decrease
in the yield preference is prescribed in Case 6, which results in
a significant increase in the production rate at the cost of a
decreased yield. As is seen in Cases 7–10, a high value of yield
requires a decrease in the preferences for production rate. To
achieve these higher yield values, both feed load and flow rate
must be decreased.

In fact, the results in Table 4 for a 99% purity constraint
system indicate that when the later eluting solute is the desired
component in a tertiary mixture, the optimal values of design
parameters were the following: low to medium flow rate; low
gradient slope; and variable feed load to attain a desired pro-
duction rate and yield. Here, reduced flow rate is required
because the high-purity constraint does not allow much mixing
between the zones, and mass transport limitations can come
into play.

The middle section of Table 4 presents the physical pro-

Table 4. Physical Programming Optimization Results for the Later Eluting Artificial Component in a Tertiary Mixture for a
Bi-Objective System (Production Rate and Yield) at 99, 95, and 91% Purity Constraints

RN\CN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Preferences—Pr Rate
Opt.

Value Preferences—Yield
Opt

Value
Opt. Design
Parameters

HUD UD T D HD PR* HUD UD T D HD Yield* Fl* GS* TF*

99% Purity Constraint
1 4 7● 10 13 16 8.44 80 84.5 89● 93.5 98 89.28 2.8 1 5.23
2 6 9● 12 15 18 9.28 80 84.5 ●89 93.5 98 86.4 3.13 1 5.33
3 9● 11 13 14 15 9.88 80 ●84.5 89 93.5 98 84.1 3.38 1 5.41
4 9 ●11 13 14 15 10.84 75 79.5● 84 88.5 93 80.03 3.78 1 5.57
5 9 11● 13 14 15 12.43 65 68 71● 74 77 71.88 4.52 1 5.96
6 11 12.5 ●13.5 14.5 16 13.46 50 54 58 ●62 64 61.71 4.59 1 7.41
7 4 6● 8 10 12 6.72 89 91.5 ●94 96.5 99 93.9 2.18 1 5.1
8 4 ●6 8 10 12 5.98 94 95● 96 97 99.5 95.48 1.92 1 5.05
9 2 3 4 5● 6 5.04 94 95 96 97● 99.5 97.11 1.6 1 5.03
10 2 3● 4 5 6 3.45 97 98.5 99● 99.5 99.9 99.01 1.24 1 4.35
95% Purity Constraint
1 5 10 15● 20 25 16.89 80 84.5 89 ●93.5 98 92.05 4.06 1 7.02
2 13 16 ●19 22 25 18.82 80 84.5 89● 93.5 98 89.49 4.59 1 7.11
3 19 ●22 25 28 31 21.28 80 84.5● 89 93.5 98 84.58 4.59 1 8.53
4 19 22 ●25 28 31 23.38 65 68 71 ●74 77 73.94 4.59 1 10.71
5 19 22 ●25 28 31 23.98 50 54 58 62● 66 63.59 4.59 1 12.75
6 22 ●25 28 31 34 24.07 42 46 50 54● 58 55.67 4.59 1 14.63
7 23 ●25 27 29 31 24.1 38 42 46 50● 54 50.05 4.59 1 16.32
8 5 10 15● 20 25 15.56 84 88 92 ●94 99 93.57 3.78 1 6.83
9 4 8 10 ●12 14 11.72 90 93 96 ●98 99 97.14 2.94 1 6.38
10 4 5 6 7 ●8 7.78 95 97 98 99● 99.9 99.34 1.98 1 6.14
91% Purity Constraint
1 15 19 23● 27 31 23.79 84.5 88 91.5 ●94 98 92.49 4.59 1 8.72
2 20 25● 30 35 40 26.00 84.5 88 ●91.5 94 98 90.04 4.59 1 9.79
3 20 25● 30 35 40 26.73 80 84.5 ●89 93.5 98 88.92 4.59 1 10.20
4 20 25● 30 35 40 28.41 75 79.5 84● 88.5 93 85.10 4.59 1 11.34
5 20 25 30● 35 40 30.26 65 68 71 74● 77 75.32 4.59 1 13.64
6 20 25 30● 35 40 30.78 50 54 58 62 66● 66.51 4.59 1 15.69
7 30● 35 40 45 50 30.94 50 54 58 ●62 66 60.27 4.59 1 17.41
8 15 19 ●23 27 31 22.57 88 91 ●94 97 99.5 93.44 4.59 1 8.2
9 15 19 ●23 27 31 20.06 92 94 ●96 98 99 95.08 4.1 1 8.01
10 10 12 14● 16 18 14.71 96 97 98● 99 99.9 98.25 3.29 1 7.05
11 8 9 10 11● 12 11.81 97 97.5 98.5 99● 99.9 99.17 2.63 1 7.02

Note: For a 99% purity constraint system: In Cases 2–6 higher production rate is desired, whereas in Cases 7–10 higher yield is desired. For a 95% purity constraint
system: In Cases 2–7 higher production rate is desired, whereas in Cases 8–10 higher yield is desired. For a 91% purity constraint system: In Cases 2–7 higher
production rate is desired, whereas in Cases 8–10 higher yield is desired. The upper bound specified on flow rate, gradient slope, and feed load in the physical
programming of a binary mixture (�-chymotrypsinogen A and ribonuclease A) is 4.59 (mL/min), 22 (mM/DCV), and 22 (DCV), respectively. The lower bound
specified on flow rate, gradient slope, and feed load is 0.1 (mL/min), 1 (mM/DCV), and 1 (DCV), respectively. DCV denotes the dimensionless column volume.
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gramming optimization results for a 95% purity constraint. The
preference ranges in the physical programming optimization
for the 95% purity scenario were selected as 4–31 (mmol
min�1 mL�1) for the production rate and 38–99.9% for the
yield. In Cases 2–8 higher production rate is desired, whereas
in Cases 9–11 higher yield is desired. The optimal values of
design metrics obtained for the base case (Case 1) are 16.89
(mmol min�1 mL�1) and 92.05% for the production rate and
yield, respectively. An increase in the optimal value of pro-
duction rate is achieved in Cases 2–3, by increasing the spec-
ified preferences of the production rate itself, while keeping the
yield preferences the same. As seen in the table, there is a
steady increase in production rate with a corresponding de-
crease in the yield. To further increase the production rate, the
preferences for the yield are decreased in Cases 4–7 and those
of the production rate are maintained at constant (and unreal-
istic) values. As seen in the table, because the production rate
preferences are for the most part beyond the maximal Pareto
optimal value, there is minimal increase in the production rate
with concomitant significant decreases in the yield. Clearly,
this is not acceptable.

In Cases 8–10, higher optimal values of yield are achieved
by first increasing the preferences for yield (Case 8), and later
(Cases 9–10) by simultaneously increasing the yield prefer-
ences and decreasing the preferences for the production rate.
Interestingly, if the desired yield is below 90% then the optimal
flow rate for this case is the maximal attainable value of 4.59
mL/min. Thus, in contrast to the results with 99% purity where
the maximal flow rate was possible only for low yields (such as
61.7%), for 95% purity the maximal flow rate can be used for
any case where the yield is �90%.

The bottom section of Table 4 presents the physical pro-
gramming optimization results for a 91% purity constraint. The
preference ranges in the physical programming optimization
for the 91% purity scenario were 8–50 (mmol min�1 mL�1)
for the production rate and 70–99% for the yield. In Cases 2–7
higher production rate is desired, whereas in Cases 8–11 higher
yield is desired. In Cases 2–7, the maximal flow rate value is
obtained. Cases 6 and 7 show that because the production rate
preferences are for the most part beyond the maximal Pareto
optimal value, there is minimal increase in the production rate
with concomitant significant decreases in the yield. At this
level of purity constraint, the maximal flow rate is obtained for
all cases except for those of high yields (	94%).

As was seen in the middle and the bottom sections of Table
4, to attain a higher yield, the flow rate was decreased from its
maximal value. However, to attain higher production rates, the
flow rate was maintained at its maximal value and feed load
was the only design parameter varied. Figures 8b and c exam-
ine the relative effect of the feed load on the production rate
and yield at two different purities (91 and 95%). As shown in
Figures 8b and c, the effect of the optimal feed load on the yield
is more pronounced than the effect on the production rate. At
higher feed loads the increase of the production rate is low and
the system exhibits saturation behavior arising from specified
bounds on the design parameters. Further, it can be seen from
the figure that the effect of feed load on the production rate is
more pronounced at the 91% purity constraint.

At any feed load, as the gradient slope becomes higher, there
is an increased mixed zone between closely retained compo-
nents that decreases both the yield and purity of the desired

component. It turns out that most of the optimal results pre-
sented in Table 4 for both 91 and 95% purity constraints
correspond to relatively high feed loads. Under these condi-
tions, sample displacement effects can become pronounced,
resulting in significant narrowing of the bands. Under these
conditions, any increase in the gradient slope can result in
significant losses of material resulting from overlap of the
narrow zones. Because all of the results in Table 4 for a later
eluting component correspond to a relatively difficult separa-
tion at high feed loads, the physical programming optimization
resulted in the lowest gradient slope for all of the scenarios.
The program also resulted in the highest flow rate in most cases
when low-purity constraint of 91 and 95% constraint was
maintained. This is because the higher production rate attained
at higher flow rates overshadowed any adverse transport effects
at low-purity constraints. Under low to moderate feed load
conditions, the production rate increases when loading is in-
creased. However, under the higher feed load conditions, the
production rate decreases because the narrowing of the bands
overshadows the sharpening of the tails in these induced sam-
ple displacement profiles (Gallant et al., 1996). Accordingly,
there are specific feed load conditions that will satisfy the
various physical programming preference states.

Tertiary mixture with tri-objective system

Although dilution is a significant issue in batch chromato-
graphic processes, product pool concentration has never been
explicitly studied for the optimization of chromatographic pro-
cesses. Accordingly, this section studies a coupling of a new
objective function, product pool concentration, to the bi-objec-
tive systems studied in the previous section. First, we will study
the effect of production pool concentration on the other design
metrics (production rate and yield) using Pareto frontiers in a
bi-objective scenario. We will then investigate the Pareto op-
timal surfaces and physical programming optimal results for
the tri-objective scenario. The mapping between design param-
eters (feed load, flow rate, salt gradient) and design metrics
(production rate, yield, product pool concentration, and maxi-
mum solute concentration) is carried out using the hybrid
model strategy described elsewhere (Nagrath et al., 2004).

Before examining the tri-objective system, it is instructive to
separately examine the interplay between the product pool
concentration and the production rate and yield as presented in
Figures 9a and b, respectively. As seen in Figure 9a, as the
production pool concentration increases, there is a concomitant
continual decrease in the production rate. For Figure 9b, as the
product pool concentration increases there is a minimal change
in the yield, until the Pareto frontier exhibits a sharp decrease.
The Pareto frontiers at higher purity constraints are below the
frontiers at lower purity constraints for both cases in Figures 9a
and b. For the yield–product pool concentration bi-objective
system (Figure 9b), increasing the purity reduces the product
pool concentration anchor values. The reason for this is that an
increase in the purity constraint produces a decrease in the
optimum feed load, which in turn decreases the optimal prod-
uct pool concentration.

Figures 9c and d present the Pareto surfaces of the later
eluting component for a tri-objective system in a tertiary mix-
ture at purities of both 95 and 99%. As seen in Figure 9c, as the
product pool concentration increases, the trade-off region of

522 AIChE JournalFebruary 2005 Vol. 51, No. 2



the Pareto surface between the production rate and the yield
decreases for the 95% purity result. Figure 9d presents a
comparison of the Pareto Frontiers at purities of 95 and 99%.
Although both surfaces exhibit a sharp increase of product pool
concentration with decreasing yield, the surface for 99% purity
is shifted toward lower production rates. Also, the product pool
concentration approaches its anchor value more sharply for the
99% purity constraint compared to that for the 95% constraint.

Table 5 presents the physical programming results for purity
constraints of both 99 and 95%. The preference ranges in the
physical programming optimization for the 99% purity sce-

nario were 4–18 (mmol min�1 mL�1) for the production rate,
50–98% for the yield, and 0.05–1.1 (mM) for the product pool
concentration. The optimal values of design metrics obtained
for the base case (Case 1) were 4.24 (mmol min�1 mL�1),
85.09%, and 0.2 (mM) for the production rate, yield, and
product pool concentration, respectively. Interestingly, the op-
timal feed load for all of these cases was relatively low because
of the product pool concentration design metric.

To increase the optimal value of production rate, the pref-
erence values for the production rate are increased, whereas
yield and product pool concentration preferences are decreased

Figure 9. Pareto frontiers of the later eluting component at different purities in a tertiary mixture (�-chymotrypsino-
gen A, ribonuclease A, and artificial component) on a 90 �m FF Sepharose stationary phase for bi-objective
and tri-objective systems.
(a) Production rate–product pool concentration bi-objective system. (b) Yield–product pool concentration bi-objective system. In (a) and (b),
the triangles, squares, and circles are the Pareto solutions for optimization at 91, 95, and 99% purity constraints, respectively. Pareto surfaces
of the later eluting component for a tri-objective (production rate, yield, and product pool concentration) setting, at two different purities in
a tertiary mixture (�-chymotrypsinogen A, ribonuclease A, and the later eluting artificial component) are shown in (c) and (d). (c) Pareto
surface at a 95% purity constraint; (d) comparison of Pareto surfaces at 95 and 99% purity constraints.
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in Cases 2–6. It can be seen from Cases 1–2 that by increasing
the flow rate and gradient slope we can attain an increase in the
production rate with a corresponding decrease in the yield at a
constant product pool concentration. However, if the prefer-
ences of the product pool concentration are decreased, as is
done in Case 3, the optimal flow rate is increased and the
gradient slope is decreased. To obtain a substantially higher
value of the production rate, as is evident in Cases 5 and 6, the
preferences of both yield and the product pool concentration
have to be decreased significantly. As seen in the 99% purity
section of the table, this is attained by increasing both flow rate
and feed load, and decreasing the gradient slope. An increase in
the yield was the objective of Cases 7 and 8. Case 7 shows that,
to attain a high yield without sacrificing the product pool
concentration, we need to decrease the flow rate and increase
the gradient slope. In Case 8, a simultaneous decrease in the
preferences of production rate and product pool concentration
and an increase in the preferences of yield are required. In
Cases 9–11, the preferentially desired design metric is the
product pool concentration. The higher product pool concen-
tration is achieved at a lower flow rate, higher gradient slope,
and an optimum feed load.

The results for a 95% purity constraint are given in the
bottom section of Table 5. When the same design metric
preferences are used (Case 1 in the bottom and top sections of
Table 5), a decrease in the purity constraint results in a higher
value of the optimal production rate, yield, and product pool
concentration. In the 95% purity section of Table 5, Cases 2–7

show that a higher value of the production rate can be achieved
by increasing the flow rate, decreasing the gradient slope, and
increasing the feed load. This in turn results in decreased
values of the yield and product pool concentration. In Cases 8
and 9, both higher production rate and product pool concen-
tration are desired. To attain this, all the design parameters are
maintained at relatively higher optimal values. However, to
attain the higher pool concentration, the production rate must
be decreased. In Cases 10 and 11, a higher product pool
concentration is attained by decreasing the flow rate and in-
creasing the gradient slope. This in turn results in reductions in
the optimal production rate and yield. A high value of yield is
obtained in Cases 12 and 13 at moderate flow rate, feed load,
and gradient slopes.

After evaluating these different possible scenarios, the ques-
tion still remains what conditions would one want to use for
this separation. Assuming that a yield of less than 85% is
unacceptable, one can examine Cases 1, 10, 12, and 13 in the
95% purity section of Table 5. What these data indicate is that
if a lower product pool concentration is acceptable, then Case
12 with relatively high values of production rate and yield
would be preferred. On the other hand, if a higher product pool
concentration is required, then Case 1 would probably be
selected because of the low production rate of Case 10. This
analysis illustrates the power of the physical programming
approach in that it enables the chromatographer to clearly
understand the interplay and trade-offs involved in developing
optimal processes. Clearly, this could be extended to additional

Table 5. Physical Programming Optimization Results for a Later Eluting Component in a Tertiary Mixture for a Tri-
Objective System (Production Rate, Yield, and Product Pool Concentration) at 99% and 95% Purity Constraints

RN\CN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Preferences—Pr Rate
Opt.

Value Preferences—Yield
Opt.

Value
Preferences—Product Pool

Conc. (PPC)
Opt.

Value
Opt. Design
Parameters

HUD UD T D HD PR* HUD UD T D HD Yield* HUD UD T D HD PCC* Fl* GS* TF*

99% Purity Constraint
1 4● 7 10 13 16 4.24 80 84.5● 89 93.5 98 85.09 0.2● 0.4 0.6 0.8 1.0 0.2 1.47 3.4 5.27
2 4● 7 10 13 16 5.3 65 68 ●71 74 77 70.62 0.2● 0.4 0.6 0.8 1.0 0.2 1.98 3.83 5.87
3 5 ●8 11 13 16 7.43 65 68 ●71 74 77 70.78 0.1● 0.2 0.3 0.4 0.5 0.13 2.63 2.26 6.2
4 5 ●8 11 13 16 7.59 50 54 ●58 62 66 57.45 0.1 ●0.2 0.3 0.4 0.5 0.17 2.84 2.67 7.22
5 8 10● 12 14 16 10.89 50 54 58● 62 66 59.22 0.05 0.1● 0.15 0.2 0.25 0.11 3.96 1.52 7.23
6 10 12● 14 16 18 12.20 50 54 58● 62 66 58.4 0.05 ●0.1 0.15 0.2 0.25 0.096 4.43 1.29 7.35
7 2● 4 6 8 10 2.62 80 84.5● 89 93.5 98 85.2 0.2 ●0.4 0.6 0.8 1.0 0.33 0.97 6.54 4.91
8 1 2 ●3 4 5 2.99 80 84.5 89 93.5 ●98 97.05 0.05 0.1 0.15● 0.2 0.25 0.15 0.94 2.06 5.09
9 2● 4 6 8 10 2.96 75 79.5● 84 88.5 93 80.46 0.2 ●0.4 0.6 0.8 1.0 0.32 1.12 6.65 5.08
10 0.4 0.8 1.2 ●1.6 2 1.54 50 54 58 62● 66 63.62 0.2 0.4 0.6● 0.8 1.0 0.7 0.72 21.0 5.22
11 0.4 0.8 ●1.2 1.6 2 1.02 50 54 58 62● 66 62.23 0.6 0.8 ●0.9 1.0 1.1 0.872 0.37 21.0 6.46
95% Purity Constraint
1 4 7● 10 13 16 7.0 80 84.5● 89 93.5 98 85.35 0.2 ●0.4 0.6 0.8 1.0 0.4 1.77 6.24 7.22
2 5 8● 11 14 17 8.05 75 79.5● 84 88.5 93 80.56 0.2 ●0.4 0.6 0.8 1.0 0.40 2.05 6.43 7.58
3 5 8 11● 14 17 11.14 65 68 71 74● 77 74.03 0.1 0.2 0.3● 0.4 0.5 0.31 2.89 4.93 8.28
4 5 8 11 14● 17 14.75 65 68 71 74 ●77 76.63 0.05 0.1 0.15 0.2● 0.25 0.21 3.57 2.93 8.37
5 8 11 14 17● 20 17.92 50 54 58 62 ●66 65.77 0.05 0.1 0.15 0.2● 0.25 0.21 4.51 3.15 9.37
6 14 17 20● 23 26 20.99 50 54 58 62● 66 63.17 0.05 0.1 0.15 ●0.2 0.25 0.17 4.59 2.05 11.2
7 20 23● 26 29 32 23.73 50 54 58 62● 66 62.63 0.05 0.1 ●0.15 0.2 0.25 0.12 4.59 1.08 12.8
8 11 ●14 17 20 23 13.09 65 68● 71 74 77 68.42 0.3● 0.6 0.9 1.2 1.5 0.3 3.37 4.82 8.83
9 ●20 21 22 23 24 13.92 ●50 54 58 62 66 41.89 ●0.5 0.6 0.7 0.8 0.9 0.4 3.99 7.98 12.93
10 1 3● 5 7 9 3.12 84 88● 92 96 99.5 88.97 0.6 0.7● 0.8 0.9 1.0 0.74 0.75 12.11 7.23
11 1 4 ●7 10 13 5.87 50 54 58 ●62 66 61.27 0.6 0.7 0.8● 0.9 1.0 0.82 1.74 18.69 8.53
12 4 7 10● 13 16 10.34 84 88 92● 96 99.5 92.72 0.05 0.1 0.15● 0.2 0.25 0.16 2.48 2.12 6.99
13 1 4 ●7 10 13 6.61 92 96 98● 99 99.5 98.81 0.05 0.1 0.15● 0.2 0.25 0.15 1.57 1.89 6.66

Note: For a 99% purity constraint system: In Cases 2–6 higher production rate is desired, higher yield is desired in Cases 7–8, and in Cases 9–11 higher product
pool concentration is desired. For a 95% purity system: In Cases 2–7 higher production rate is desired; both higher production rate and product pool concentration
is desired in Cases 8 and 9; Cases 10–11 have higher desirability for product pool concentration; and higher yield is desired in Cases 12–13.
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design metrics (such as economics) to make this approach even
more effective.

Conclusions

In this article we have developed a physical programming–
based framework for multiobjective optimization and demon-
strated that this strategy is well suited to address the priorities
and trade-offs of various competing objectives and/or con-
straints in complex nonlinear chromatographic systems. This
approach provides flexibility to the chromatographic engineer
and enables the use of physically significant ranges of desir-
ability (such as desirable, tolerable, undesirable, etc.) for each
design objective. The presented approach enables visualization
and qualitatively evaluates important questions such as: Are the
design objectives really conflicting? Is there a reason why one
of the design objectives is worse during optimization? Why is
one of the objective functions not changing in value? In future
work, we will use this approach for multiproduct optimization
and for other modes of chromatography (such as step gradient,
displacement). In addition, we will use multiobjective optimi-
zation in concert with the novel process control method (Na-
grath et al., 2003) for improving the performance of large-scale
chromatographic processes by reducing batch-to-batch varia-
tions.
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